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Finite-connectivity systems as error-correcting codes
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We investigate the performance of parity check codes using the mapping onto Ising spin systems proposed
by Sourlas@Nature~London! 339, 693 ~1989!; Europhys. Lett.25, 159 ~1994!#. We study codes where each
parity check comprises products ofK bits selected from the original digital message with exactlyC checks per
message bit. We show, using the replica method, that these codes saturate Shannon’s coding bound forK
→` when the code rateK/C is finite. We then examine the finite temperature case to assess the use of
simulated annealing methods for decoding, study the performance of the finiteK case, and extend the analysis
to accommodate different types of noisy channels. The connection between statistical physics and belief
propagation decoders is discussed and the dynamics of the decoding itself is analyzed. Further insight into new
approaches for improving the code performance is given.@S1063-651X~99!15911-7#

PACS number~s!: 02.70.2c, 89.90.1n, 89.70.1c, 05.50.1q
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I. INTRODUCTION

Error correction is required whenever information has
be reliably transmitted through a noisy environment. T
theoretical grounds for classical error-correcting codes w
first presented in 1948 by Shannon@1#. He showed that it is
possible to transmit information through a noisy chann
with a vanishing error probability by encoding up to a give
critical rateRc equivalent to thechannel capacity. However,
Shannon’s arguments were nonconstructive, and devi
such codes turned out to be a major practical problem in
area of information transmission.

In 1989 Sourlas@2,3# proposed that, due to the equiva
lence between addition over the field$0,1% and multiplica-
tion over$61%, many error-correcting codes can be mapp
onto many-body spin glasses with appropriately defined c
plings. This observation opened the possibility of applyi
techniques from statistical physics to study coding syste
in particular, these ideas were applied to the study of pa
check codes. These linear block codes can be represente
matrices ofN columns andM rows that transformN-bit mes-
sages toM (.N) parity checks. Each row represents b
involved in a particular check and each column represe
checks involving the particular bit. The number of bits us
in each check and the number of checks per bit depend
the code construction. We concentrate on the case w
exactly C checks are performed for each bit and exactlyK
bits compose each check.

The code rate Ris defined as the information conveye
per channel use R5H2( f s)N/M5H2( f s)K/C, where
H2( f s)52(12 f s)log2(12 f s)2 f s log2( f s) is the binary en-
tropy of the message with biasf s .

In the mapping proposed by Sourlas a message is re
sented by a binary vectorjP$61%N encoded to a higher-
dimensional vector J0P$61%M defined as J^ i 1 ,i 2 . . . i K&

0

5j i 1
j i 2

. . . j i K
, where M sets of K indices are randomly
PRE 601063-651X/99/60~5!/5352~15!/$15.00
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chosen. A corrupted versionJ of the encoded messageJ 0

has to be decoded for retrieving the original message.
decoding process can be viewed as a statistical Bayesian
cess@4# ~see Fig. 1!. Decoding focuses on producing an e
timate ĵ to the original message that minimizes a given e
pected lossŠ^L(j,ĵ)&p(Juj)‹p(j) averaged over the indicate
probability distributions. The definition of the loss depen
on the particular task; the simple Hamming distan
L(j,ĵ)5( jj j ĵ j can be used for decoding binary messag
An optimal estimator for this particular loss function isĵ j
5sgn̂ Sj&p(SuJ) @4#, whereS is anN-dimensional binary vec-
tor representing outcomes of the decoding process. U
Bayes’s theorem, the posterior probability can be written
ln p(SuJ)5 ln p(JuS)1 ln p(S)1const. Sourlas has show
@3# that for parity check codes this posterior can be written
a many-body Hamiltonian:

ln p~SuJ!52bH~S!5b(
m

AmJm)
i Pm

Si1bHprior~S!,

~1.1!

wherem5^ i 1 , . . . ,i K& is a set of indices andA is a tensor
with the propertiesAmP$0,1% and ($m: i Pm%Am5C ; i ,
which determines theM components of the codewordJ0.
The second termHprior(S) stands for the prior knowledge o
the actual messages; it can be chosen asHprior(S)
5F( j 51

N Sj to represent the expected bias in the mess
bits. For the simple case of a memoryless binary symme
channel

FIG. 1. The encoding, message corruption in the noisy chan
and decoding can be represented as a Markovian process. The

is to obtain a good estimateĵ for the original messagej.
5352 © 1999 The American Physical Society
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PRE 60 5353FINITE-CONNECTIVITY SYSTEMS AS ERROR- . . .
~BSC!, J is a corrupted version of the transmitted messageJ0

where each bit is independently flipped with probabilityp
during transmission. The hyperparameterb that reaches an
optimal value at Nishimori’s temperature@4–6#, is related to
the channel corruption rate. The decoding procedure tra
lates to finding the thermodynamical spin averages for
system defined by the Hamiltonian~1.1! at a certain tempera
ture ~Nishimori’s temperature for optimal decoding!; as the
original message is binary, the retrieved message bits
given by the signs of the corresponding averages.

In the statistical physics framework the performance
the error-correcting process can be measured by the ove
between actual message and estimate for a given sce
characterized by a code rate, corruption process, and in
mation content of the message. To assess the typical pro
ties we average this overlap over all possible codesA and
noise realizations~possible corrupted vectorsJ) given the
messagej and then over all possible messages:

m5
1

N K (
i 51

N

j iŠsgn̂ Si&‹A,JujL
j

. ~1.2!

Here sgn̂Si& is the sign of the spins thermal average cor
sponding to the Bayesian optimal decoding. The average
ror per bit is then given bype5(12m)/2. Although this
performance measure is not the usual physical magnetiza
~it can be better described as a measure of misalignmen
the decoded message!, for brevity, we will refer to it asmag-
netization.

From the statistical physics point of view, the number
checks per bit is analogous to the spin system connect
and the number of bits in each check is analogous to
number of spins per interaction. Sourlas’s code has b
studied in the case of extensive connectivity, where the n
ber of bondsC;(K21

N21) scales with the system size. In th
case it can be mapped onto known problems in statist
physics such as the Sherrington-Kirkpatrick~SK! model @7#
(K52) and random energy model~REM! @8# (K→`). It
has been shown that the REM saturates Shannon’s bo
@2#. However, it has a rather limited practical relevance,
the choice of extensive connectivity corresponds to a van
ingly small code rate.

Here we present an analysis of Sourlas’s code for the c
of finite connectivity where the code rate is nonvanishin
detailing and extending our previous brief reports@9,10#. We
show that Shannon’s bound can also be attained at fi
code rates. We study the decoding dynamics and discus
connections between statistical physics and belief propa
tion methods.

This paper is organized as follows: in Sec. II we introdu
a naive mean-field model that contains all the necessary
gredients to understand the system qualitatively. Section
describes the statistical physics treatment of Sourlas’s c
showing that Shannon’s bound can be attained for finite c
rates ifK→`. The finiteK case and the Gaussian noise a
also discussed in Sec. III. The decoding dynamics is a
lyzed in Sec. IV. Concluding remarks are given in Sec.
Appendixes with detailed calculations are also provided.
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II. NAIVE MEAN-FIELD THEORY

A. Equilibrium

To gain some insight into the code behavior one can s
by considering that the original message isj j51 for all j ~so
m51 will correspond to perfect decoding! and use Weiss’s
mean-field theory as a first~naive! approximation. The idea
is to consider an effective field given by~for unbiased mes-
sages withF50):

hj
eff5 (

$m: j Pm%
Jm )

i Pm\ j
Si ~2.1!

acting in every site. The first strong approximation here c
sists in disregarding the reaction fields that describe the
fluence of sitej back over the system. The local magnetiz
tion can then be calculated:

mj5^tanh~bhj
eff!&J,S.tanhb^hj

eff&J,S , ~2.2!

where we introduced a further approximation taking av
ages inside the function that can be seen as a high temp
ture approximation. Disregarding correlations among sp
and computing the proper averages one can write

m5tanh@bC~122p!mK21#, ~2.3!

wherep is the noise level in the channel. An alternative w
to derive the above equation is by considering the free
ergy:

f ~m!52~122p!
C

K
mK2

s~m!

b
. ~2.4!

The entropic terms(m) is

s~m!52
11m

2
lnS 11m

2 D2
12m

2
lnS 12m

2 D . ~2.5!

Minimizing this free energy one can obtain Eq.~2.3! whose
solutions give the possible phases after the decoding proc
In Fig. 2 we show the maximum magnetization solutionsm
for Eq. ~2.3! as a function of the flip ratep at code rateR
51/2 and K52,3,4. ForK52 the performance degrade
faster with the noise level than in theK.2 case. The dashe
line indicates coexistence between paramagneticm50 and
ferromagneticm.0 phases.

B. Decoding dynamics

In a naive mean-field framework the decoding process
be seen as an iterative solution for Eq.~2.3! starting from a
magnetization value that depends on prior knowledge ab
the original message. The fixed points of this dynamics c
respond to the minima of the free energy; a specific m
mum is reached depending on the initial condition. In t
insets of Fig. 2 we show, as a measure for the basin
attraction, the maximal deviation between the initial con
tion and the original messagel512m0 that allows conver-
gence to a ferromagnetic solution. At the bottom inset
show the deviationl at code rateR51/2, increasing values
of K and noise levelp50.1. An increasing initial magneti
zation is needed whenK increases; decoding without prio
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knowledge is only possible forK52. The top inset showsl
for K53, p50.1; asC increases~code rate decreases!, the
basin of attraction increases.

One can understand intuitively how the basin of attract
depends on the connectivities by representing the code
graph with bit and check nodes and looking at the mean-fi
behavior of a single bit node~see Fig. 3!. The corrupted
checks contribute wrong (21 for the ‘‘all ones’’ message
case! values to the bit nodes (m,1 in the mean field!. Since
check node values correspond to a product ofK21 bit val-
ues, the probability of updating these nodes to the wro
values increases withK, degrading the overall performanc
On the other hand, ifC increases for a fixedK the bit nodes
gather more information and are less sensitive to the p
ence of~a limited amount of! wrong bits .

Although this naive picture indicates some of the quali
tive features of real codes, one certainly cannot rely on
numerical predictions. In the following sections we w
study Sourlas’s codes, using more sophisticated techniq
that will substantially refine the analysis.

FIG. 2. Code performance measured by the magnetizationm as
a function of the noise levelp as given by the naive mean-fiel
theory at code rateR51/2 andK52,3,4, respectively, from the
bottom. The long-dashed line indicates paramagnetic-ferromag
coexistence. Insets: maximum initial deviationl for convergence at
a noise levelp50.1. Top inset:K53 and increasingC. Bottom
inset: code rateR51/2 and increasingK.

FIG. 3. Graphical representation of the code.
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III. EQUILIBRIUM

A. Replica theory

In the following subsections we will develop the replic
symmetric theory for Sourlas’s codes and show that, in
dition to providing a good description of the equilibrium,
describes the typical decoding dynamics, using belief pro
gation methods.

The previous naive ‘‘all ones’’ messages assumption
be formally translated to the gauge transformation@11#
Si°Sij i andJm°Jm) i Pmj i that maps any general messa
to the ferromagnetic configuration defined asj i* 51 ; i .
One can then rewrite the Hamiltonian in the form

H~S!52(
m

AmJm)
i Pm

Si2F(
k

jkSk . ~3.1!

With this transformation, the bits of the uncorrupted e
coded message areJi

051 ; i , and, for a BSC, the corrupte
bits are random variables with probability:

P~Jm!5~12p!d~Jm21!1pd~Jm11!, ~3.2!

wherep is the channel flip rate. For deriving typical prope
ties of these codes one has to obtain an expression for
free energy by invoking the replica approach where the f
energy is defined as

f 52
1

b
lim

N→`

1

N

]

]n U
n50

^Z n&A,j,J , ~3.3!

where^Z n&A,j,J represents an analytical continuation in t
interval nP@0,1# of the replicated partition function define
as

^Z n&A,j,J5Tr$Sj
a%F ^ebF(a,kjkSk

a
&j

3K expS b(
a,m

AmJm)
i Pm

Si
aD L

A,J
G . ~3.4!

The magnetization can be rewritten in the gauged v
ables as

m5^Šsgn̂ Si&‹A,Juj* &j , ~3.5!

wherej* denotes the transformation of a messagej into the
ferromagnetic configuration. The usual magnetization
site can be easily obtained by calculating

^^Si&&A,J,j52S ] f

]~jF ! D . ~3.6!

From this derivative one can find the distribution of the e
fective local fieldshj that can be used to assess the mag
tization m, since sgn(̂Sj&)5sgn(hj ) .

To compute the replicated partition function we close
follow Ref. @12#. We average uniformly over all codesA
such that($m: i Pm%Am5C ; i to find

tic
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PRE 60 5355FINITE-CONNECTIVITY SYSTEMS AS ERROR- . . .
^Z n&A,j,J5expH N Extrq,q̂FC2
C

K

1
C

K S (
l 50

n

Tl (
^a1 . . . a l &

qa1 . . . a l

K D
2CS (

l 50

n

(
^a1 . . . a l &

qa1 . . . a l
q̂a1 . . . a l D

1 ln Tr$Sa% expK bFj (
a

SaL
j

3S (
l 50

n

(
^a1 . . . a l &

q̂a1 . . . a l
Sa1 . . . Sa l D CG J ,

~3.7!

whereTl5^tanhl(bJ)&J , as in @13#, andq051. We give de-
tails of this calculation in Appendix A. At the extremum th
order parameters acquire expressions similar to those of
@12#:

q̂a1 , . . . ,a l
5T lqa1 , . . . ,a l

K21

qa1 , . . . ,a l
5K S )

i 51

l

Sa i D
3S (

l 50

n

(
^a1 . . . a l &

q̂a1 . . . a l
Sa1 . . . Sa l D 21L

X
,

~3.8!

where

X5^ebFj(aSa
&jS (

l 50

n

(
^a1 . . . a l &

q̂a1 . . . a l
Sa1 . . . Sa l D C

,

~3.9!

and ^ . . . &X5Tr$Sa%@( . . . )X#/Tr$Sa%@( . . . )#. The term
p̂(S)5( l 50

n (^a1 . . . a l &
q̂a1 . . . a l

Sa1 . . . Sa l represents a prob

ability distribution over the space of replicas andp0(S)

5^ebFj(aSa
&j is a prior distribution over the same space. F

reasons that will become clear in Sec. IV,qa1 , . . . ,a l
repre-

sents onel th momentum of the equilibrium distribution of
bit-check edge in a belief network during the decoding p
cess andq̂a1 . . . a l

representsl th moments of a check-bit edg

equilibrium distribution. The distributionX represents the
probability of a certain site~bit node! configuration subjected
to exactlyC interactions and with prior probability given b
p0.

B. Replica symmetric solution

The replica symmetric~RS! ansatz can be introduced v
the auxiliary fieldsp(x) andp̂(y) in the following way~see
also @12#!:
ef.

r

-

q̂a1 . . . a l
5E dyp̂~y!tanhl~by!,

~3.10!

qa1 . . . a l
5E dxp~x!tanhl~bx!

for l 51,2, . . . .
Plugging it into the replicated partition function~3.7!, per-

forming the limitn→0, and using Eq.~3.3! ~see Appendix B
for details!, one obtains

f 52
1

b
Extrp,p̂H a ln coshb1aE F)

l 51

K

dxlp~xl !G
3K lnF11tanhbJ)

j 51

K

tanhbxj G L
J

2CE dx dyp~x!p̂~y!ln@11tanhbx tanhby#

2CE dy p̂~y!ln coshby1E F)
l 51

C

dylp̂~yl !G
3K lnF2 coshbS (

j 51

C

yj1Fj D G L
j
J , ~3.11!

where a5C/K. The saddle-point equations, obtained
varying Eq. ~3.11! with respect to the probability distribu
tions, provide a set of relations betweenp(x) and p̂(y),

p~x!5E F )
l 51

C21

dylp̂~yl !G K dFx2 (
j 51

C21

yj2FjG L
j

~3.12!

p̂~y!5E F )
l 51

K21

dxlp~xl !G
3K dF y2

1

b
tanh21S tanhbJ )

j 51

K21

tanhbxj D G L
J

.

Later we will show that this self-consistent pair of equatio
can be seen as a mean-field version for the belief propaga
decoding.

Using Eq.~3.6! one finds that the local field distribution i

P~h!5E F)
l 51

C

dylp̂~yl !G K dFh2(
j 51

C

yj2FjG L
j

,

~3.13!

wherep̂(y) is given by the saddle-point equations above
The magnetization~1.2! can then be calculated using

m5E dh sgn~h!P~h!. ~3.14!
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The code performance can be assessed by assuming a
ticular prior distribution for the message bits, solving t
saddle-point equations~3.12! numerically and then comput
ing the magnetization. Instabilities in the solution within t
space of symmetric replicas can be probed looking at sec
derivatives of the functional whose extremum defines
free energy~3.11!. The simplest necessary condition for st
bility is having non-negative second functional derivatives
relation top(x) @and p̂(y)]:

1

bE F )
l 51

K22

dxlp~xl !G
3K lnF11tanhbJ tanh2bx )

j 51

K22

tanhbxj G L
J

>0,

~3.15!

for all x. The replica symmetric solution is expected to
unstable for sufficiently low temperatures~largeb). For high
temperatures we can expand the above expression ar
small b to find the stability condition:

^J&J^x&p
K22>0. ~3.16!

We expect the averagêx&p5*dx p(x) x to be zero in the
paramagnetic phase and positive in the ferromagnetic ph
satisfying the stability condition. This result is still genera
inconclusive, but provides some evidence that can be ex
ined numerically. In Sec. III D we will test the stability o
our solutions using condition~3.15!. In the next sections we
restrict our study to the unbiased case (F50), which is of
practical relevance, since it is always possible to compre
biased message into an unbiased one.

C. CaseK˜`, C5aK

For this case one can obtain solutions to the saddle-p
equations for arbitrary temperatures. In the first saddle-p
equation~3.12! one can write

x5 (
l 51

C21

yl'~C21!^y&p̂5~C21!E dyyp̂~y!.

~3.17!

It means that if̂ y&p̂50 @as it is in the paramagnetic and sp
glass ~SG! phases# then p(x) must be concentrated atx
50, implying thatp(x)5d(x) andp̂(y)5d(y) are the only
possible solutions. Moreover, Eq.~3.17! implies that in the
ferromagnetic phase one can expectx'O(K).

Using Eq. ~3.17! and the second saddle-point equati
~3.12! one can find a self-consistent equation for the me
field ^y&p̂ :

^y&p̂5 K 1

b
tanh21

„tanh~bJ!

3$tanh@b~C21!^y&p̂#%K21
…L

J

. ~3.18!
ar-
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For a BSC the above average is over distribution~3.2!. Com-
puting the average, usingC5aK and rescaling the tempera
ture asb5b̃(ln K)/K, in the limit K→` one obtains

^y&p̂5~122p!$tanh@b̃a^y&p̂ln~K !#%K, ~3.19!

where p is the channel flip probability. The mean fiel
^y&p̂50 is always a solution to this equation~either para-
magnetic or SG!; at bc5 ln(K)/@2aK(122p)# an extra
nontrivial ferromagnetic solution emerges witĥy&p̂51
22p. As the connection with the magnetizationm is given
by Eq. ~3.13! and Eq.~3.14!, it is not difficult to see that it
implies m51 for the ferromagnetic solution. One remar
able point is that the temperature where the ferromagn
solution emerges isbc;O„ln(K)/K…; it means that in a
simulated annealing process paramagnetic-ferromagn
barriers emerge quite early for largeK values, implying
metastability and, consequently, a very slow convergenc
seems to advocate the use of smallK values in practical
applications. This case is analyzed in Sec. III E. Forb.bc
both paramagnetic and ferromagnetic solutions exist.

The ferromagnetic free energy can be obtained from
~3.11! using Eq.~3.17!, being f ferro52a(122p). The cor-
responding entropy issferro50, indicating a single solution
The paramagnetic free energy is obtained by plugg
p(x)5d(x) and p̂(y)5d(y) into Eq. ~3.11!:

f para52
1

b
@a ln~cosh b!1 ln 2#, ~3.20!

spara5a~ ln @cosh b!2b tanh b#1 ln 2. ~3.21!

Paramagnetic solutions are unphysical fora
.(ln 2)/(b tanh b2 ln chb), since the corresponding en
tropy is negative. To complete the phase diagram picture
have to assess the spin-glass free energy and entropy
have seen in the beginning of this section that replica sy
metric SG and paramagnetic solutions consist of the sa
field distributions forK→`, implying unphysical behavior
In order to produce a solution with non-negative entrop
one has to break the replica symmetry. We use here a p
matic way to build this solution, using the simplest one-s
replica symmetry breaking~RSB! known asfrozen spins.

It was observed in Ref.@14# that for the REM a one-step
symmetry breaking scheme gives the exact solution. In
scheme then replicas’ space is divided into groups ofm
identical solutions. It was shown that an abrupt transition
the order parameter from a unique solution~Edwards-
Anderson parameterq51, SG phase! to a completely uncor-
related set of solutions (q50, paramagnetic phase! occurs.
This transition takes place at a critical temperaturebg that
can be found by solving the appropriate saddle-point eq
tions; this temperature is given by the root of the repl
symmetric entropy (sRS50) meaning that the RS-RSB tran
sition occurs at the same point as the paramagnetic-SG
sition in this model. The symmetry breaking parameter w
found to bemg5bg /b, indicating that this kind of solution
is physical only forb.bg , sincemg<1 @15#, indicating a
paramagnetic-SG phase transition. The free energy can
computed by plugging the order parameters into the effec
Hamiltonian, obtained after averaging over the disorder a
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taking the proper limits. It shows no dependence on the t
perature, since forb.bg the system is completely frozen i
a single configuration.

For the Sourlas code, in the regime we are interested
SG solutions to the saddle-point equations are given
p(x)5d(x) andp̂(y)5d(y). The RSB-SG free energy tha
guarantees continuity in the SG-paramagnetic transition
identical to f para, since the SG and paramagnetic solutio
have exactly the same structure, to say:

f RSB-SG52
1

bg
@a ln~cosh bg!1 ln 2#, ~3.22!

where bg is a solution for sRS-SG5a@ ln(cosh b)
2b tanh b#1 ln 250.

In Fig. 4 we show the phase diagram for a given code r
R in the temperatureT versus noise levelp plane.

D. Shannon’s limit

Shannon’s analysis shows that up to a critical code
Rc , which equals the channel capacity, it is possible to
cover information with arbitrarily small error probability fo
a given noise level. For the BSC,

Rc5
1

ac
511p log2 p1~12p!log2~12p!. ~3.23!

Sourlas code, in the case whereK→` and C;O(NK)
can be mapped onto the REM and has been shown to
capable of saturating Shannon’s bound in the limitR→0 @2#.
In this section we extend the analysis to show that Shann
bound can be attained by Sourlas code at zero tempera
also for theK→` limit but with connectivity C5aK. In
this limit the model is analogous to the diluted REM an
lyzed by Saakian in@16#. The errorless phase is manifest
in a ferromagnetic phase with perfect alignment (m51) ~a
condition that is only possible for infiniteK) up to a certain

FIG. 4. Phase diagram in the plane temperatureT versus noise
level p for K→` andC5aK, with a54. The dotted line indicates
Nishimori’s temperatureTN . Full lines represent coexistence. Th
critical noise level ispc . The necessary condition for stability in th
ferromagnetic phase is satisfied above the dashed line.
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critical noise level; a further noise level increase produ
frustration leading to a SG phase where the misalignmen
maximal (m50). The ferromagnetic-SG transition is anal
gous to the transition from errorless decoding to decod
with errors described by Shannon. A paramagnetic phas
also present when the transmitted information is insuffici
to recover the original message (R.1).

At zero temperature saddle-point equations~3.12! can be
rewritten as

p~x!5E F )
l 51

C21

dylp̂~yl !GdS x2 (
j 51

C21

yj D , ~3.24!

p̂~y!5E F )
l 51

K21

dxlp~xl !G K dXy2sgnS J )
l 51

K21

xl D
3min(uJu, . . . ,uxK21uCL

J

.

The solutions for these saddle-point equations may,
general, result in probability distributions with singular an
regular parts. As a first approximation we choose the s
plest self-consistent family of solutions, which are, sinceJ
561, given by

p̂~y!5p1d~y21!1p0d~y!1p2d~y11!, ~3.25!

p~x!5 (
l 512C

C21

T[ p6 ,p0 ;C21]~ l ! d~x2 l !, ~3.26!

with

T[ p1 ,p0 ,p2 ;C21]~ l !5 (
$k,h,m%

8
~C21!!

k!h!m!
p1

k p0
hp2

m ,

~3.27!

where the prime indicates thatk,h,m are such thatk2h
5 l , k1h1m5C21. Evidence for this simple ansat
comes from Monte Carlo integration of Eq.~3.12! at very
low temperatures that shows solutions comprising th
dominant peaks and a relatively weak regular part. Ins
ferromagnetic and paramagnetic phases a more complex
gular solution comprising five peaksp̂(y)5p12d(y21)
1p1d(y20.5)1p0d(y)1p2d(y10.5)1p22d(y11) col-
lapses back to the simpler three peak solution. In Fig. 5
show a typical result of a Monte Carlo integration for th
field p̂(y). The two peaks that emerge by using either t
three peak ansatz or the five peak ansatz are shown as d
lines. In the inset we show the weak regular part of t
Monte Carlo solution. Plugging the above ansatz into
saddle-point equations one can write a closed set of eq
tions in p6 and p0 that can be solved numerically~see ap-
pendix D for details!.

The three peak solution can be of three types: ferrom
netic (p1.p2), paramagnetic (p051) or SG (p25p1).
Computing free energies and entropies enables one to
struct the phase diagram. At zero temperature the param
netic free energy isf para52a and the entropy isspara5(1
2a)ln 2; this phase is physical only fora,1, which is
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expected since it corresponds exactly to the regime where
transmitted information is not sufficient to recover the act
message (R.1).

The ferromagnetic free energy does not depend on
temperature, having the formf ferro52a(122p) with en-
tropy sferro50. One can find the ferromagnetic-SG coexi
ence line that corresponds to the maximum performance
Sourlas code by equating Eq.~3.22! and f ferro. Observing
thatbg5bN(pc) ~as seen in Fig. 4!, we found that this tran-
sition coincides with Shannon’s bound, Eq.~3.23!. It is in-
teresting to note that in the largeK regime both RS-
ferromagnetic and RSB-SG free energies~for T,Tg) do not
depend on the temperature; it means that Shannon’s bou
valid also for finite temperatures up toTg . In Fig. 6 we give
the complete zero temperature phase diagram.

The stability of replica symmetric ferromagnetic an
paramagnetic solutions used to obtain Shannon’s bound
be checked using Eq.~3.15! at zero temperature:

lim
b→`

1

bE F )
l 51

K22

dxl p~xl !G
3K lnF11tanhbJ tanh2 bx )

j 51

K22

tanhbxj G L
J

>0,

~3.28!

for all x.
For paramagnetic solutions the above integral vanish

trivially satisfying the condition, while for the ferromagnet
solution in theK large regime,xl'O(K) and the integral
becomes

22p$@12Q~x11!#1uxu@Q~x11!2Q~x21!#

1Q~x21!%, ~3.29!

FIG. 5. Histogram representing the mean-field distributionp̂(y)
obtained by Monte Carlo integration at low temperature (b510,
K53, C56, and p50.1). Dotted lines represent solutions o
tained by iterating self-consistent equations both with five peak
three peakAnsätze. Inset: detailed view of the weak regular pa
arising in the Monte Carlo integration.
he
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whereQ(x)51 for x>0 and 0 otherwise, indicating insta
bility for p.0. For the noiseless casep50 the stability
condition is satisfied. The instability of the ferromagne
phase opens up the possibility that Sourlas’s code does
saturate Shannon’s bound, since a correction to the fe
magnetic solution could change the ferromagnetic-SG tr
sition line. However, it was shown in Sec. III B that th
instability vanishes for large temperatures, which suppo
to some extent, the ferromagnetic-SG line obtained and
saturation of Shannon’s bound in some region, as long as
temperature is lower than Nishimori’s temperature. For fin
temperatures the stability condition for the ferromagnetic
lution can be rewritten as

@11tanh~b!tanh2~bx!# (12p)@12tanh~b!tanh2~bx!#p

>1 ; x. ~3.30!

For p50 the condition is clearly satisfied. For finitep a
critical temperature above which the stability condition
fulfilled can be found numerically. In Fig. 4 we show th
critical temperature in the phase diagram; one can see
there is a considerable region in which our result show
that Sourlas’s code can saturate Shannon’s bound is
ported. Conclusive evidence of that will be given by simu
tions presented in Sec. IV.

E. Finite K case

Although Shannon’s bound can only be attained in
limit K→`, it was shown in Sec. III C that there are som
possible drawbacks, mainly in the decoding of messages
coded by largeK codes, due to large barriers that are e
pected to occur between paramagnetic and ferromagn
states. In this section we consider the finiteK case, for which
we can solve the RS saddle-point equations~3.12! for arbi-
trary temperatures using Monte Carlo integration. We c
also obtain solutions for the zero temperature case using
simple iterative method described in Sec. III D.

FIG. 6. Phase diagram in the plane code rateR versus noise
level p for K→` and C5aK at zero temperature. The
ferromagnetic-SG coexistence line corresponds to Shann8s
bound.d
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We expect the ferromagnetic-SG transition forK.2 to be
properly described by the frozen spin RSB solution. It h
been shown thatK.2 extensively connected models@14#
exhibit Parisi-type order functions with similar discontinuo
structure to that found in theK→` case; it was also show
that the paramagnetic like solution, employed to descr
paramagnetic and SG phases, is locally stable within
complete replica space and zero field~unbiased message
case! at all temperatures.

At the top of Fig. 7 we show the zero temperature ma
netizationm as a function of the noise levelp at code rate
R51/2. These curves were obtained by using the three p
ansatz of Sec. III D. It can be seen that the transition is
second order forK52 and first order forK.3, similar to
extensively connected models. The transition, as descr
by the RS solution, tends top50.5 asK grows. Note that
this does not correspond to perfect retrieval, since the R
spin-glass phase dominates forp.pc ~see bottom of Fig. 7!.
In the bottom figure we plot RS free energies and RSB f
zen spin free energy, from which we determine the criti
probability pc where the transition occurs~marked by an
arrow!. After the transition, free energies forK53,4,5 and 6
acquire values that are lower than the SG free energy; n
ertheless, the entropy is negative and these free energie
therefore unphysical. It is remarkable that this critical va
does not change significantly for finiteK in comparison to
infinite K. Observe that Shannon’s bound cannot be attai
for finite K, sincem51 exactly only ifK→`.

The K52 model with extensive connectivity~SK! is
known to be somewhat special, a full Parisi solution
needed to recover the concavity of the free energy and
Parisi order function has a continuous behavior@17#. No
stable solution is known for the intensively connected mo
~Viana-Bray model!. In order to check the theoretical resu

FIG. 7. Top: zero temperature magnetizationm as a function of
the noise levelp for variousK values at code rateR51/2, as ob-
tained by the iterative method. Notice that the RS theory predic
transition of second order forK52 and first order forK.2. Bot-
tom: RS-ferromagnetic free energies~white circles forK52; and
from the left,K 5 3, 4, 5, and 6) and RSB-SG free energy~dotted
line! as functions of the noise levelp. The arrow indicates the
region where the RSB-SG phase starts to dominate. Inset: a det
view of the RS-RSB transition region.
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obtained, one relies on simulations of the decoding proc
at low temperatures. In Sec. VIII we show that the simu
tions are in good agreement with the theoretical results.

F. Gaussian noise

Using the replica symmetric free energy~3.11! and the
frozen spin RSB free energy~3.22! one can easily extend th
analysis to other noise types. The general paramagnetic
energy and entropy can be written as

f para52
1

b
@a^ ln~cosh bJ!&J1 ln 2#,

spara5a@^ ln~coshbJ!&J2b^J tanh~bJ!&J#1 ln 2.
~3.31!

The SG-RSB free energy is given by

f SG-RSB52
1

bg
@a^ ln~cosh bgJ!&J1 ln 2#, ~3.32!

with bg defined as the solution of

a@^ ln ~cosh bgJ!&J2bg^J tanh~bgJ!&J#1 ln 250.
~3.33!

The ferromagnetic free-energy is in general given
f ferro52a^J&J52a^J tanh(bNJ)&J ~see Appendix D!. The
maximum performance of the code is defined by the criti
line:

a@^ ln~cosh bgJ!&J2bg^J tanh~bNJ!&J#1 ln 250,
~3.34!

obtained by equating free energies in paramagnetic and
romagnetic phases. Comparing this expression with entr
~3.33! it can be seen thatbg5bN at the critical line, the same
behavior observed in the BSC case. From Eq.~3.34! one can
write

Rc5bN
2 ]

]b F 1

b
^ log2 cosh~bJ!&JG

b5bN

, ~3.35!

which can be used to compute the performance of the c
for arbitrary symmetric noise.

Supposing that the encoded bits can acquire totally unc
strained values, Shannon’s bound for Gaussian noise is g
by Rc5 1

2 log2(11S/N), whereS/N is the signal-to-noise ra
tio, defined as the ratio of source energy per bit~squared
amplitude! over the spectral density of the noise~variance!.
If one constrains the encoded bits to binary values$61% the
capacity of a Gaussian channel is

Rc5E dJP~Ju1!log2 P~Ju1!2E dJP~J!log2 P~J!,

~3.36!

whereP(JuJ0)5(1/A2ps2)exp@2(J2J0)2/2s2#.
In Fig. 8 we show the performance of Sourlas’s code i

Gaussian channel together with the capacities of the unc
strained and binary Gaussian channels. We show that aK
→` andC5aK, Sourlas’s code saturates Shannon’s bou

a

led



e
n
a

o
ilit

d

d

a-
o

ra
-
ro
s

go
ic

to

r

tri-
l

ce

e

us-

ste-

y

ac

e.

n-

5360 PRE 60RENATO VICENTE, DAVID SAAD, AND YOSHIYUKI KABASHIMA
also for the binary Gaussian channel. The significantly low
performance in the unconstrained Gaussian channel ca
trivially explained by the binary coding scheme, while sign
and noise are allowed to acquire real values.

IV. DECODING DYNAMICS

A. Belief propagation

The decoding process of an error-correcting code relies
computing averages over the marginal posterior probab
P(Sj uJ) for each one of theN message bitsSj given the
corrupted encoded bitsJm ~checks!, wherem5^ i 1 , . . . ,i K&
is one of theM sets chosen by the tensorAm . The probabi-
listic dependencies existing in the code can be represente
a bipartite graph known as abelief networkwhere nodes in
one layer correspond to theM checksJm , while nodes in the
other correspond to theN bits Sj . Each check is connecte
exactly to K bits and each bit is connected exactly toC
checks@see Fig. 9~a!#.

Pearl @18# proposed an iterative algorithm for comput
tion of marginal probabilities in belief networks. These alg
rithms operate by updating beliefs~conditional probabilities!
locally and propagating them. Generally the convergence
these iterations depends on the absence of loops in the g
As can be seen in Fig. 9~a!, networks that define error
correcting codes may include loops, and convergence p
lems may occur. Recently it was shown that in some ca
Pearl’s algorithm works even in the presence of loops@19#.

The particular use of belief networks as decoding al
rithms for error-correcting codes based on sparse matr
was discussed by MacKay in@20#. In that work a loop-free
approximation for the graph in Fig. 9~a! was proposed~see
@18# for a general discussion on such approximations!. In
fact, it was shown in@21# that the probability of finite length
loops in these graphs vanishes with the system size.

In this framework the network is decomposed in a way
avoid loops, and the conditional probabilitiesqm j

(S) and r m j
(S)

are computed. The set of bits in a checkm is defined as
L(m) and the set of checks over the bitj as M( j ). The

FIG. 8. Critical code rateRc and channel capacity for a binar
Gaussian channel as a function of the signal-to-noise rateS/N ~solid
line!. Sourlas’s code saturates Shannon’s bound. Channel cap
of the unconstrained Gaussian channel~dashed line!.
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probability thatSj5S, given information on all checks othe
thanm, is denoted

qm j
(S)5P~Sj5Su$Jn :nPM~ j !\m%!,

r m j
(S)5 Tr$Sl : l PL(m)\ j %P„JmuSj 5 S,$Sl : l PL~m!\ j %…

3 )
l PL(m)\ l

qm l
(Sl )

is the probability of the checkJm if the bit j is fixed to Sj
5S, and the other bits involved are supposed to have dis
butions given byqm i

(Si ) . In Fig. 9~b! one can see a graphica
representation ofr m j

(S) that can be interpreted as the influen
of the bit Sj and the mean field) l PL(m)\ lqm l

(Sl ) @representing
bits in L(m) over thanl ] over the checkJm . In the Fig. 9~c!
we see that each fieldqm l

(S) represents the influence of th
checks inM( l ), excludingm, over each bitSl ; this setup
excludes the loops that may exist in the actual network.

Employing the Bayes theorem,qm j
(S) can be rewritten as

qm j
(S)5am j P„$Jn :nPM~ j !\m%uSj…pj

(S) , ~4.1!

where am j is a normalization constant, such thatqm j
(11)

1qm j
(21)51 and pj

(S) is the prior probability over the bitj.
The distributionP„$Jn :nPM( j )\m%uSj… can be replaced by
a mean-field approximation by factorizing dependencies
ing fields r m j

(S) :

qm j
(S)5am j pj

(S) )
nPM( j )\m

r n j
(S) ,

r m j
(S)5Tr$Sl : l PL(m)\ j %P„JmuSj5S,$Si : i PL~m!\ j %…

3 )
i PL(m)\ j

qm i
(Si ) . ~4.2!

A message estimateĵ j5sgn(̂ Sj&q
j
(S)) can be obtained by

solving the above equations and computing the pseudopo
rior:

ity

FIG. 9. ~a! Belief network representing an error-correcting cod
Each bitSj ~white circles! is linked to exactlyC checks, and each
check ~black circles! Jm is linked to exactlyK bits. ~b! Graphical
representation of the fieldr m j . The gray box represents the mea
field contribution) l PL(m)\ jqm l of the other bits on the checkJm . ~c!
Representation of one of the fieldsqm l .
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qj
(S)5aj pj

(S) )
nPM( j )

r n j
(S) , ~4.3!

whereaj is a normalization constant.
By taking advantage of the normalization conditions

the distributionsqm j
(11)1qm j

(21)51 andr m j
(11)1r m j

(21)51, one
can change variables and reduce the number of equa
~4.2! to the pair dqm j5qm j

(11)2qm j
(21) and dr m j5r m j

(11)

2r m j
(21) . Solving these equations, one can retriever m j

(S)

5 1
2 (11dr m jSj ), and the pseudoposterior can be calcula

to obtain the estimate.

B. Connection with statistical physics

The belief propagation algorithm was shown in@20# to
outperform other methods, such as simulated annealing
@9# it was proposed that this framework can be reinterpre
using statistical physics. The main ideas behind the appr
mations contained in Eq.~4.2! are somewhat similar to th
Bethe@22# approximation to diluted two-body spin glasse
Actually, for systems involving two-body interactions it
known that the Bethe approximation is equivalent to solv
exactly a model defined on a Cayley tree and one that th
a good approximation for finitely connected systems in
thermodynamical limit@23#. In fact, loops in the connection
become rare as the system size grows and can be negl
without introducing significant errors. The belief propagati
can be seen as a Bethe-like approximation for multiple-b
interaction systems.

The mean-field approximations used here are also q
similar to the Thouless-Anderson-Palmer~TAP! approach
@24#. The fieldsqm j

(S) correspond to the mean influence
other sites other than the sitej and the fieldsr n j

(S) represent
the influence ofj again over the system~reaction fields!. The
analogy can be exposed by observing that the likeliho
p(JmuS) is proportional to the Boltzmann weight:

wB„Jmu$Sj : j PL~m!%…5expS 2bJm)
i Pm

Si D . ~4.4!

That can also be written in the more convenient form

wB„Jmu$Sj : j PL~m!%…

5
1

2
cosh~bJm!S 11tanh~bJm! )

j PL(m)
Sj D . ~4.5!

The variabler m j
(Sj ) can then be seen as proportional to t

effective Boltzmann weight obtained by fixing the bitSj :

weff~JmuSj !5Tr$Sl : l PL(m)\ j %wB„Jmu$Sl : l PL~m!%…

3 )
l PL(m)\ j

qm l
(Sl ) . ~4.6!

Plugging Eq.~4.5! for the likelihood into Eqs.~4.2!, using
the fact that the prior probability is given bypj

(S)5 1
2 @1

1tanh(bSF)#, and computingdqm j anddr m j ,

dr m j5tanh~bJm! )
l PL(m)\ j

dqm l ,
r

ns

d

In
d
i-

.

g
is
e

ted

y

te

d

dqm j5tanhS (
nPM( l )\m

tanh21~dr n j !1bF D . ~4.7!

The pseudoposterior can then be calculated:

dqj5tanhS (
nPM( l )

tanh21~dr n j !1bF D , ~4.8!

providing Bayes’s optimal decodingĵ j5sgn(dqj ). It is im-
portant at this point to support the mean-field assumpti
used here by methods of statistical physics@9#. The factoriz-
ability of the probability distributions can be explained b
weak correlations between connections~checks! and by the
cluster property

lim
N→`

1

N2 (
iÞ j

~^SiSj&p(SuJ)2^Si&p(SuJ)^Sj&p(SuJ)!
2→0

~4.9!

that bitsSj obey within a pure state@17#.
One can push the above connections even further. Eq

tions ~4.7!, of course, depend on the particular received m
sageJ. In order to make the analysis message independ
one can use a gauge transformationdr m j°j jdr m j and
dqm j°j jdqm j to write

dr m j5tanh~bJ! )
l PL(m)\ j

dqm l ,

dqm j5tanhS (
nPM( l )\m

tanh21~dr n j !1bj jF D . ~4.10!

In this form, a success in the decoding process correspo
to dr m j.0 anddqm j51 for all m and j. For a large number
of iterations, one can expect the ensemble of belief netwo
to converge to an equilibrium distribution wheredr anddq

are random variables sampled from distributionsr̂(y) and
r(x), respectively. By transforming these variables asdr
5tanh(by) and dq5tanh(bx) and considering the actua
message and noise as quenched disorder, Eqs.~4.10! can be
rewritten as

y5
1

b K tanh21S tanh~bJ! )
j 51

K21

tanh~bxj !D L
J

,

x5K (
j 51

C21

yj1jFL
j

. ~4.11!

The above relations lead to a dynamics in the distributio
r̂(y) and r(x), which is exactly the same obtained whe
solving iteratively RS saddle-point equations~3.12!. The
probability distributionsr̂(y) and r(x) can, therefore, be
identified withp̂(y) andp(x), respectively, and the RS so
lutions correspond to decoding a generic message using
lief propagation averaged over an ensemble of differ
codes, noise, and signals.

Equations~4.7! are now used to show the agreement b
tween the simulated decoding and analytical calculatio
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For each run, a fixed code is used to generate 20 000
codewords from 10 000 bit messages; corrupted version
the codewords are then decoded using Eq.~4.7!. Numerical
solutions for ten individual runs are presented in Figs. 10
11; initial conditions are chosen asdr m l50 and dqm l
5tanh(bF), reflecting prior beliefs. In Fig. 10 we show re
sults for K52 andC54 in the unbiased case, at code ra
R51/2 ~prior probabilitypj

(1)5 f 50.5) at a low temperature
T50.26 ~we avoidedT50 due to numerical difficulties!.
Solving saddle-point equations~3.12! numerically using

FIG. 10. Magnetization as a function of the flip probabilityp for
decoding using TAP equations forK52. From the bottom: Monte
Carlo solution of the RS saddle-point equations for unbiased m
sages (f s50.5) atT50.26 ~line! and ten independent runs of TA
decoding for each flip probability~plus signs!, T50.26, and biased
messages (f s50.1) at Nishimori8s temperatureTN .

FIG. 11. Magnetization as a function of the flip probabilityp for
decoding using TAP equations forK55. The dotted line is the
replica symmetric saddle-point equation Monte Carlo integrat
for unbiased messages (f s50.5) at Nishimori’s temperatureTN .
The bottom error bars correspond to ten simulations using the T
decoding. The decoding performs badly on average in this scen
The upper curves are for biased messages (f s50.1) at the Nishi-
mori temperatureTN . The simulations agree with results obtain
using the replica symmetric Ansatz and Monte Carlo integratio
bit
of

d

Monte Carlo integration methods we obtain solutions that
in good agreement with simulated decoding. In the sa
figure we show the performance for the case of biased m
sages (pj

(1)5 f s50.1), at code rateR51/4. Also here the
agreement with Monte Carlo integrations is rather convi
ing. The third curve in Fig. 10 shows the performance
biased messages at Nishimori’s temperatureTN ; as ex-
pected, it is far superior compared to low temperature p
formance, and the agreement with Monte Carlo results
even better.

In Fig. 11 we show the results obtained forK55 andC
510. For unbiased messages the system is extremely s
tive to the choice of initial conditions and does not perfo
well on average, even at Nishimori8s temperature. For biase
messages (f s50.1, R51/4) results are far better and i
agreement with Monte Carlo integration of the RS sadd
point equations.

The experiments show that belief propagation meth
may be used successfully for decoding Sourlas-type code
practice, and provide solutions that are well described by
analytical solutions.

C. Basin of attraction

To assess the size of the basin of attraction, we cons
the decoding process as a dynamics in the graph space w
edgesdqm j are considered as dynamical variables. In gaug
transformed equations~4.10!, the perfect decoding of a mes
sage corresponds todqm j51. To analyze the basin of attrac
tion, we start with random initial values with a given no
malized deviation from the perfect decodingl
5(1/NC)(m j (12dqm j

0 ). It is analogous to the finite magne
tizations used in the naive mean field of Sec. II, since a gi
dqm j

0 corresponds to a given magnetization value by us
Eq. ~4.8!.

In Fig. 12 we show the maximal deviation in initial con

s-

n

P
io.

FIG. 12. Top: maximum initial deviationl for decoding. Top:l
as function of the number of interactionsK. Circles are averages
over ten different codes withN5300, R51/3, and noise levelp
50.1. Bottom: l as function of the connectivityC. Circles are
averages over ten codes withN5300, K53, and noise levelp
50.1. Lines and3 ’s correspond to the RS dynamics described
the saddle-point equations.
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ditions required for successful decoding. The top figu
shows an average over ten different codes withN5300
~circles! for a fixed code rateR51/3, fixed noise levelp
50.1, and increasingK. The bottom figure shows the max
mal deviation in initial conditions for a fixed number of spin
per interactionK53, noise levelp50.1, and increasingC.
We confirm the fidelity of the RS description by compari
the experimental results with the basin of attraction predic
by saddle-point equations~3.12!. One can interpret thes
equations as a dynamics in the space of distributionsp(x).
Performing the transformationX5tanh(bx), one can move
to the space of distributionsP(X) with support over@21,
11#. The initial conditions can then be described simply
P0(X)5(12l/2)d(X21)1(l/2)d(X11). In Fig. 12 we
show the basin of attraction of this dynamics as lines a
crosses.

The K52 case is the only practical code from a dynam
cal point of view, since it has the largest basin of attract
and no prior knowledge of the message is necessary for
coding. Nevertheless, this code8s performance degrade
faster than theK.2 case, as shown in Sec. III, which poin
to a compromise between good dynamical properties on
side and good performance on the other. One idea coul
to have a code with changingK, starting withK52, to guar-
antee convergence and progressively increase its value
improve the performance@25#.

On the other hand, the basin of attraction increases w
C. Again it points to a trade-off between good equilibriu
properties~smallC and large code rates! and good dynamica
properties~large C, large basin of attraction!. Mixing small
and largeC values in the same code seems to be a way
take advantage of this trade-off@26–28#.

V. CONCLUDING REMARKS

In this paper we studied, using the replica approach
finite connectivity many-body spin glass that corresponds
Sourlas’s codes for finite code rates. We have shown, usi
simplified one step RSB solution for the spin-glass pha
that for theK→` and C5aK regime at low temperature
the system exhibits a ferromagnetic-SG phase transition
corresponds to Shannon’s bound. However, we have
shown that the decoding problem for largeK has bad con-
vergence properties when simulated annealing strategie
used.

We were able to find replica symmetric solutions for fin
K and found good agreement with practical decoding per
mance using belief networks. Moreover, we have shown
RS saddle-point equations actually describe the mean be
ior of belief propagation algorithms.

We studied the dynamical properties of belief propagat
and compared them to statistical physics predictions, c
firming the validity of the description. The basin of attractio
was shown to depend onK andC. Strategies for improving
the performance were discussed.

The same methodology has been employed success
@29# to state-of-the-art algorithms as the recently redisc
ered Gallager code@30# and its variations@25,28#. We be-
lieve that the connections found between belief networks
statistical physics can be further developed to provide dee
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insights into the typical performance of general erro
correcting codes.
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APPENDIX A: FREE ENERGY

In order to compute free energies, one needs to calcu
the replicated partition function~3.7!. One can start from Eq
~3.4!:

^Z n&A,j,J5Tr$Sj
a%„^exp@2bH (n)~$Sa%!#&A,J,j…, ~A1!

whereH (n)($Sa%) represents the replicated Hamiltonian a
a the replica indices. First one averages over the pa
check tensorsA, for which an appropriate distribution has t
be introduced, denotingm[^ i 1 , . . . ,i K& for a specific set of
indices:

^Z n&5K 1

N (
$A%

)
i

dS (
$m: i Pm%

Am2CDTr$Sj
a%

3exp@2bH (n)~$Sa%!#L
J,j

, ~A2!

where thed distribution imposes a restriction on the conne
tivity per spin,N is a normalization coefficient, and the no
tation m\ i means the setm minus the elementi. Using inte-
gral representations for thed functions and rearranging,

^Z n&5Tr$Sj
a%K 1

N S )
i

R dzi

2p i

1

zi
C11D

3(
$A%

S)
m

S )
i Pm

zi D AmDexp@2bH(n)~$Sa%!#L
J,j

.

~A3!

Remembering thatAP$0,1%, and using the expression~1.1!
for the Hamiltonian, one can change the order of the su
mation and the product above and sum overA:

^Z n&5Tr$Sj
a%K 1

N S )
i

R dzi

2p i

1

zi
C11D ebF(a,ij iSi

a

3)
m

F11S )
i Pm

zi DexpS bJm(
a

)
i Pm

Si
aD G L

J,j

.

~A4!

Using the identity exp(bJm) i PmSi
a)5cosh(b)@1

1() i PmSi
a)tanh(bJm)#, one can perform the product overa

to write
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^Z n&5Tr$Sj
a%

1

N S )
i

R dzi

2p i

1

zi
C11D ^ebF(a,ij iSi

a
&j

3)
m

F11S )
i Pm

zi D coshn~b!

3S 11^tanh~bJ!&J(
a

)
i Pm

Si
a

1^tanh2~bJ!&J (
^a1a2&

)
i Pm

Si
a1)

j Pm
Sj

a21••• D G .
~A5!

Defining ^m1 ,m2 ,•••,m l& as an ordered set of sets, an
observing that for large N, (^m1 . . . m l &

( . . . )

5(1/l !) @(m( . . . )# l , one can perform the product over th
setsm and replace the series that appears by an exponen
s

he
al:

^Z n&5Tr$Sj
a%

1

N S )
i

R dzi

2p i

1

zi
C11D ^ebF(a,i j iSi

a
&j

3expFcoshn~b!S (
m

S )
i Pm

zi D
1^tanh~bJ!&J(

a
(
m

)
i Pm

ziSi
a

1^tanh2~bJ!&J (
^a1a2&

(
m

)
i Pm

ziSi
a1Si

a21••• D G .
~A6!

Observing that (m5(1/K!) ( i 1 , . . . ,i K
, defining Tl

5^coshn(bJ)tanhl(bJ)&J , and introducing auxiliary variables
qa1 . . . am

5(1/N)( iziSi
a1 . . . Si

am , one finds
^Z n&A,j,J5
1

N S )
i

R dzi

2p i

1

zi
C11D S E dq0dq̂0

2p i
D S )

a
E dqadq̂a

2p i D •••expFNK

K! S T0q0
K1T1(

a
qa

K1T2 (
^a1a2&

qa1a2

K 1••• D G
3expF2NS q0q̂01(

a
qaq̂a1 (

^a1a2&
qa1a2

q̂a1a2
1••• D G

3Tr$Sj
a%F ^ebF(a,ij iSi

a
&jexp(

i
S q̂0zi1(

a
q̂aziSi

a1••• D G . ~A7!
The normalization constant is given by

N5(
$A%

)
i

dS (
$m: i Pm%

Am2CD , ~A8!

and can be computed using exactly the same method
above, resulting in

N5S )
i

R dzi

2p i

1

zi
C11D S E dq0dq̂0

2p i
D

3expFNK

K!
q0

K2Nq0q̂01q̂0(
i

zi G . ~A9!

Computing the integrals overzi ’s and using Laplace’s
method to compute the integrals overq0 and q̂0, one gets

N5expH Extrq0 ,q̂0
FNK

K!
q0

K2Nq0q̂01N lnS q̂0
C

C!
D G J .

~A10!

The extremum point is given byq05N(12K)/K@(K
21)!C#1/K and q̂05(C N)(K21/K)@(K21)!#21/K. Replacing
the auxiliary variables in Eq.~A7! using qa1 . . . am

/q0

→qa1 . . . am
and q̂a1 . . . am

/q0→q̂a1 . . . am
, computing the in-

tegrals overzi , and using Laplace’s method to evaluate t
integrals, one finally finds Eq.~3.7!.
as

APPENDIX B: REPLICA SYMMETRIC SOLUTION

The replica symmetric free energy~3.11! can be obtained
by plugging the ansatz~3.10! into Eq.~A7!. After computing
the normalizationN and using Laplace’s method, one has

^Z n&A,j,J5expH N Extrp,p̂FC

K
G1 2 C G2 1 G3G J , ~B1!

where

G15T01T1(
a

E )
j

K

@dxjp~xj !tanh~bxj !#

1T2 (
^a1a2&

E )
j

K

@dxj p~xj ! tanh2~bxj !#1•••,

~B2!

G2511(
a

E dx dyp~x! p̂~y! tanh~bx! tanh~by!

1 (
^a1a2&

E dx dyp~x! p̂~y! tanh2~bx! tanh2~by!

1•••, ~B3!

and
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G35
1

N
ln H S )

i
R dzi

2p i

1

zi
C11D Tr$Sj

a%F K exp bF(
a,i

j iSi
aL

j

3exp q̂0S (
i

zi1(
a

(
i

ziSi
aE dy p̂~y!tanh~by!

1 (
^a1a2&

(
i

ziSi
a1Si

a2E dy p̂~y!tanh2~by!1••• D G J .

~B4!

The equation forG1 can be worked out by using the defi
nition of Tm and the fact that ((^a1 . . . a l &

1)5 ( l
n) to write

G15K coshn~bJ!E S )
j 51

K

dxj p~xj !D
3S 11tanh~bJ!)

j 51

K

tanh~bxj !D nL
J

. ~B5!

Following exactly the same steps one obtains

G25E dx dyp~x! p̂~y! @11tanh~bx! tanh~by!#n,

~B6!

and

G35 ln H Tr$Sa%F K expS bFj(
a

SaD L
j

R dz

2p i

1

zC11

3expS q̂0 zE dy p̂~y! )
a51

n

~11Satanh~by!!D G J .

~B7!

Computing the integral overzi and the trace one finally find

G35 ln H q̂0

C! E )
l 51

C

dylp̂~yl !

3F (
s561

^esbFj&j)
l 51

C

~11stanh~byl !!GnJ .

~B8!

Putting everything together, and using Eq.~3.3! and some
simple manipulation, one finds Eq.~3.11!.

APPENDIX C: ZERO TEMPERATURE SELF-CONSISTENT
EQUATIONS

In this appendix we describe how one can write a se
self-consistent equations to solve the zero tempera
saddle-point equations~3.24!. Supposing a three peaks a
satz given by

p̂~y!5p1d~y21!1p0d~y!1p2d~y11!, ~C1!
f
re

p~x!5 (
l 512C

C21

T[ p6 ,p0 ;C21]~ l !d~x2 l !, ~C2!

with

T[ p1 ,p0 ,p2 ;C]~ l !

5 (
$k,h,m;k2h5 l ;k1h1m5C21%

~C21!!

k!h!m!
p1

k p0
hp2

m ,

~C3!

one can consider the problem as a random walk, wherep̂(y)
describes the probability of one step of leng
y (y.0 means one step to the right! andp(x) describes the
probability of being at distancex from the origin afterC
21 steps. With this idea in mind it is relatively easy
understandT[ p1 ,p0 ,p2 ;C21]( l ) as the probability of walking

the distancel after C21 steps with the probabilitiesp1 ,
p2, andp0 of, respectively, moving right, left, and staying
the same position. We define the probabilities of walki
right/left asc65( l

C21T[ p1 ,p0 ,p2 ;C21](6 l ). Using second
saddle-point equations~3.24!,

p15E F )
l 51

K21

dxl p~xl !G K dS 12sgnS J )
l 51

K21

xl D
3min(uJu,ux1u, . . . ,uxK21u D L

J

. ~C4!

The left side of the above equality can be read as
probability of makingK21 independent walks, such tha
afterC21 steps all of them are not in the origin and an ev
~for J511) or odd~for J521) number of walks are on the
left side. Using this reasoning forp2 andp0, one can finally
write

p15~12p! (
j 50

b K21
2 c S K21

2 j Dc2
2 jc1

K22 j 21

1p (
j 50

b K21
2 c21 S K21

2 j 11Dc2
2 j 11c1

K22 j 22

1p c2
K21 odd ~K21! ~C5!

p25~12p! (
j 50

b K21
2 c21S K21

2 j 11Dc2
2 j 11c1

K22 j 22

1p (
j 50

b K21
2 c21 S K21

2 j Dc2
2 jc1

K22 j 21

1~12p! c2
K21 odd ~K21!, ~C6!

where odd(x)51(0) if x is odd ~even!. Using thatp11p2

1p051, one can obtainp0. A similar set of equations can
be obtained for a five peak ansatz leading to the same s
solutions for the ferromagnetic and paramagnetic pha
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The paramagnetic solutionp051 is always a solution; for
C.K a ferromagnetic solution withp1.p2.0 emerges.

APPENDIX D

In this appendix we establish the identitŷJ&J
5^Jtanh(bNJ)&J for symmetric channels. It was shown
@3# that

bN J5
1

2
lnS p~Ju1!

p~Ju21! D , ~D1!

where bN is Nishimori8s temperature andp(JuJ0) are the
probabilities that a transmitted bitJ0 is received asJ. From
this we can easily find

tanh~bN J!5
p~Ju1!2p~Ju21!

p~Ju1!1p~Ju21!
. ~D2!

In a symmetric channel@p(Ju2J0)5p(2JuJ0)#, it is also
represented as
tanh~bN J!5
p~Ju1!2p~2Ju1!

p~Ju1!1p~2Ju1!
. ~D3!

Therefore,

^Jtanh~bN J!&J5TrJp~Ju1!
Jp~Ju1!

p~Ju1!1p~2Ju1!

1TrJp~Ju1!
~2J!p~2Ju1!

p~Ju1!1p~2Ju1!

5TrJp~Ju1!
Jp~Ju1!

p~Ju1!1p~2Ju1!

1TrJp~2Ju1!
Jp~Ju1!

p~2Ju1!1p~Ju1!

5TrJJp~Ju1!5^J&J . ~D4!
n
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