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We investigate the performance of parity check codes using the mapping onto Ising spin systems proposed
by SourlagNature (London 339, 693(1989; Europhys. Lett25, 159 (1994 ]. We study codes where each
parity check comprises products ifbits selected from the original digital message with exaCtiyhecks per
message bit. We show, using the replica method, that these codes saturate Shannon’s coding ound for
—o when the code rat&/C is finite. We then examine the finite temperature case to assess the use of
simulated annealing methods for decoding, study the performance of thelfioétse, and extend the analysis
to accommodate different types of noisy channels. The connection between statistical physics and belief
propagation decoders is discussed and the dynamics of the decoding itself is analyzed. Further insight into new
approaches for improving the code performance is gi/80063-651X%99)15911-7

PACS numbd(s): 02.70—~c, 89.90+n, 89.70+c, 05.50:+q

. INTRODUCTION chosen. A corrupted versioh of the encoded message’
has to be decoded for retrieving the original message. The
Error correction is required whenever information has todecoding process can be viewed as a statistical Bayesian pro-
be reliably transmitted through a noisy environment. Thecess[4] (see Fig. 1 Decoding focuses on producing an es-
theoretical grounds for classical error-correcting codes werqmateg to the original message that minimizes a given ex-

first presented in 1948 by Shannfii. He showed that itis pecteqd los(L(£,8))p(aj)p(e) @Veraged over the indicated
possible to transmit information through a noisy channelyrobability distributions. The definition of the loss depends
with a vanishing error probability by encoding up to a givenpon the particular task; the simple Hamming distance

critical rateR; equivalent to thehannel capacityHowever, E(E,%)=Ej§j %j can be used for decoding binary messages.

Shannon's arguments were nonconstructive, and dewsm}g\n optimal estimator for this particular loss function 5§

such co_des turn_ed out to b.e a major practical problem in the: SON(S,)p(sly [4], whereS is anN-dimensional binary vec-
area of information transmission.

. tor representing outcomes of the decoding process. Using
In 1989 Sourlag2,3] proposed that, due to the equiva- Bayes'’s theorem, the posterior probability can be written as

lence between addition over the fiel@,1} and multiplica- |, p(S13)=In p(J|S)+In p(S)+const. Sourlas has shown

tion over{+ 1}, many error-correcting codes can be mapped 3] that for parity check codes this posterior can be written as
onto many-body spin glasses with appropriately defined couy many-body Hamiltonian:

plings. This observation opened the possibility of applying

techniques from statistical physics to study coding systems; __ _ " _

in particular, these ideas were applied to the study of parity In p(S3)=—BH(S) '82/:4 Au‘]uill Si+ BHpriod S),
check codes. These linear block codes can be represented by (1.7
matrices ofN columns andvl rows that transforniN-bit mes- h . Dy t of indi dis at
sages toM (>N) parity checks. Each row represents bits Y erep=(i, ... Ix) is a set of indices andl is a tensor

involved in a particular check and each column representgli;.h hthj properties;té;le{o,l} and E{uf:iehu}AuzC Vﬁi)'
checks involving the particular bit. The number of bits use pwnich aetermines ¢ components of the codeword.

in each check and the number of checks per bit depend o he second terrf,,o(S) stands for the prior knowledge on

the code construction. We concentrate on the case whef@€ actual messages; it can be chosen 7dgio(S)

~EwN ine
exactly C checks are performed for each bit and exattly - >j-15; to represent the expected bias in the message
bits compose each check. bits. For the simple case of a memoryless binary symmetric

The code rate Ris defined as the information conveyed channel

per channel useR=H,(fs)N/M=H,(f)K/C, where
Ho(fg)=—(1—fg)log,(1—fg) —flog,(fy) is the binary en- ¢ 4

tropy of the message with bids. : P(J I JO)
In the mapping proposed by Sourlas a message is repre- ~ "7°!%) PS1T
. N -
sented by a binary vectagfe {+1}" encoded to a higher- FIG. 1. The encoding, message corruption in the noisy channel

dimensional vectorJ®e{+1}" defined as ‘]?il,iz i) and decoding can be represented as a Markovian process. The aim
=§i1§i2 i where M sets ofK indices are randomly is to obtain a good estimagfor the original messagé.
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(BSO), Jis a corrupted version of the transmitted mess¥ge Il. NAIVE MEAN-FIELD THEORY
where each bit is independently flipped with probability A. Equilibrium
during transmission. The hyperparamegethat reaches an

optimal value at Nishimori's temperatufé—6], is related to

the channel corruption rate. The decoding procedure trang)_y_cons!derlng that the original messag_efjlsl for all (so,
lates to finding the thermodynamical spin averages for thgn_1 W'" correspond to_perfe_zct decodlh_gnd_ use Wel_sss
system defined by the Hamiltoniah.1) at a certain tempera- mean-ﬂelq theory as a.f|r$n_a|v® approximation. The idea
ture (Nishimori’'s temperature for optimal decodings the IS to con'5|de_r an. effective field given ltfor unbiased mes-
original message is binary, the retrieved message bits arg9es WithF =0):
given by the signs of the corresponding averages.

In the statistical physics framework the performance of hfﬁ= 2 JM'H. S (2.9
the error-correcting process can be measured by the overlap lwient “iemi

bﬁtweetn gct(l;at! messzge atnd estlmet\_te for a given SdC?r}aré%ting in every site. The first strong approximation here con-
characterized by a code rate, corruption process, and Intokgeq disregarding the reaction fields that describe the in-

mation content of the message. To assess the typical ProP&iiience of sitg back over the system. The local magnetiza-
ties we average this overlap over all possible codeand tion can then be calculated:

noise realizationgpossible corrupted vectord) given the
messageE and then over all possible messages: mj:<tanr(,8hfﬁ)>3 Sztanhlg<h}9ﬁ>J s, (2.2

To gain some insight into the code behavior one can start

where we introduced a further approximation taking aver-

1/ XN ages inside the function that can be seen as a high tempera-
m=y 2 &E(sON(SN 4] - (1.2 ture approximation. Disregarding correlations among spins
=1 £ and computing the proper averages one can write
m=tanH BC(1—2p)mX~1], (2.3

Here sgiS;) is the sign of the spins thermal average corre- . . . .
sponding to the Bayesian optimal decoding. The average e}/yherep is the noise level in the channel. An alternative way
ror per bit is then given byp,=(1—m)/2. Although this to derive the above equation is by considering the free en-
performance measure is not the usual physical magnetizatio‘?{ 9y:
(it can be better described as a measure of misalignment of

the decoded messagéor brevity, we will refer to it agmag- f(m)=—(1-2p) EmK— ﬂ (2.4
netization K B
From the s_ta_tlstlcal physics point of_ view, the number_ O.fThe entropic terms(m) is
checks per bit is analogous to the spin system connectivity
and the number of bits in each check is analogous to the 14m (14+4m\ 1-m [(1-m
number of spins per interaction. Sourlas’s code has been s(m)=— 5 In 5 5 In 5 ) (2.5

studied in the case of extensive connectivity, where the num-

ber of bondsC~ (i("1) scales with the system size. In this Minimizing this free energy one can obtain Hg.3 whose
case it can be mapped onto known problems in statisticaloytions give the possible phases after the decoding process.
physics such as the Sherrington-Kirkpatri@k) model[7] |5 Fig. 2 we show the maximum magnetization solutions
(K=2) and random energy modeéREM) [8] (K—=). It or Eq. (2.3 as a function of the flip ratp at code rateR

has been shown that the REM saturates Shannon’s boundq;s gnd K=2,3,4. Fork=2 the performance degrades
[2]. However, it has a rather limited practical relevance, 8gaster with the noise level than in the>2 case. The dashed
the choice of extensive connectivity corresponds to a vanishine indicates coexistence between paramagratic0 and

ingly small code rate. , ferromagnetion>0 phases.
Here we present an analysis of Sourlas’s code for the case

of finite connectivity where the code rate is nonvanishing,
detailing and extending our previous brief repd@sl0]. We
show that Shannon’s bound can also be attained at finite In a naive mean-field framework the decoding process can
code rates. We study the decoding dynamics and discuss tle seen as an iterative solution for Eg.3) starting from a
connections between statistical physics and belief propaganagnetization value that depends on prior knowledge about
tion methods. the original message. The fixed points of this dynamics cor-
This paper is organized as follows: in Sec. Il we introducerespond to the minima of the free energy; a specific mini-
a naive mean-field model that contains all the necessary irmum is reached depending on the initial condition. In the
gredients to understand the system qualitatively. Section llinsets of Fig. 2 we show, as a measure for the basin of
describes the statistical physics treatment of Sourlas’s codattraction, the maximal deviation between the initial condi-
showing that Shannon’s bound can be attained for finite codéon and the original message=1—m, that allows conver-
rates ifK—co. The finiteK case and the Gaussian noise aregence to a ferromagnetic solution. At the bottom inset we
also discussed in Sec. Ill. The decoding dynamics is anashow the deviationn at code rateR=1/2, increasing values
lyzed in Sec. IV. Concluding remarks are given in Sec. V.of K and noise levep=0.1. An increasing initial magneti-
Appendixes with detailed calculations are also provided. zation is needed wheK increases; decoding without prior

B. Decoding dynamics
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1.2 ‘ . I1l. EQUILIBRIUM

A. Replica theory

i:\ | In the following subsections we will develop the replica
I symmetric theory for Sourlas’s codes and show that, in ad-

08 <ol | . dition to providing a good description of the equilibrium, it
' describes the typical decoding dynamics, using belief propa-
0s ‘ s ‘ gation methods.

The previous naive “all ones” messages assumption can
be formally translated to the gauge transformatidr]

1.0

[=
~
T
!

S—S¢ andJ,—J,II;_ ¢ that maps any general message

<os| i to the ferromagnetic configuration defined &=1V i.
02 One can then rewrite the Hamiltonian in the form
. B 0.0 L T

2 6 10 14
) H(S=-2 Al S-FX &S (3D
0.0 : L “ ilep k
0.0 0.1 0.2 0.3

P With this transformation, the bits of the uncorrupted en-

FIG. 2. Code performance measured by the magnetizatias cpded message aﬂé_: 1v |,_and, for a_I_SSC, the corrupted
a function of the noise leveb as given by the naive mean-field Dits are random variables with probability:
theory at code rat®R=1/2 andK=2,3,4, respectively, from the
bottom. The long-dashed line indicates paramagnetic-ferromagnetic PI)=(1-p)é(J,—1)+psJ,+1), (3.2
coexistence. Insets: maximum initial deviatiorior convergence at
a noise levelp=0.1. Top insetK=3 and increasing. Bottom  wherep is the channel flip rate. For deriving typical proper-
inset: code rat&k=1/2 and increasing. ties of these codes one has to obtain an expression for the

free energy by invoking the replica approach where the free

knowledge is only possible fdt =2. The top inset shows  €nergy is defined as
for K=3, p=0.1; asC increasegcode rate decreasgeshe
basin of attraction increases. 1

One can understand intuitively how the basin of attraction - B .. Non
depends on the connectivities by representing the code in a

graph with bit and check nodes and looking at the mean-field N . . L
behavior of a single bit nodésee Fig. 3 The corrupted where(Z") 4 ¢ ; represents an analytical continuation in the

checks contribute wrong<{1 for the “all ones” message intervaln e[ 0,1] of the replicated partition function defined

cas@ values to the bit nodesr(< 1 in the mean field Since as

check node values correspond to a produdkefl bit val-

ues, the probability of updating these nodes to the wrong (2" =TT ca
values increases witl, degrading the overall performance. A {5
On the other hand, i€ increases for a fixe& the bit nodes

ather more information and are less sensitive to the pres- o
g P ><<exp( Y ATl s )> .
o AJd

(ZM a9, 3.3
0

<eBFEa,k§kSg>§

ence of(a limited amount of wrong bits . (3.4

Although this naive picture indicates some of the qualita-
tive features of real codes, one certainly cannot rely on its
numerical predictions. In the following sections we will |
study Sourlas’s codes, using more sophisticated techniqu@g es as
that will substantially refine the analysis.

iep

The magnetization can be rewritten in the gauged vari-

M= ({SgN(S)) 4,9/¢* )¢ (3.5
where&* denotes the transformation of a messggeto the

ferromagnetic configuration. The usual magnetization per
site can be easily obtained by calculating

. (3.6

of
@ checks <<3>>A,J,§:_((9(§F)
O bits

n From this derivative one can find the distribution of the ef-
fective local fieldsh; that can be used to assess the magne-
tization m, since sgn(S;)) =sgn(;) .
To compute the replicated partition function we closely
follow Ref. [12]. We average uniformly over all code4
FIG. 3. Graphical representation of the code. such thatty ;i 4 A,=C Vi to find
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C N A
(Z“)A@J:ex;)[ N Extrgg C— o qal...a|:J dym(y)tant(By),
(3.10
+E é 7> ok qal---%:f dxar(x)tanH(B8x)
K\ i=0o I(al...a|> 1
n forl=1,2,....
-C E 2 q q Plugging it into the replicated partition functid8.7), per-
50 (ay a1 forming the limitn— 0, and using Eq3.3) (see Appendix B

for detailg, one obtains

+1In Trigy exp< BFé¢ 2 S“>

1 K
é fZ_E Extrm;l alncosh,BJraf IT dxm(x)
=1
n C
x| > > &al__,alsal...sa') , <
=0 (aq...a) X{ In 1+tanh,3JH tanhgx;
=1 J

3.7

where 7= (tanH(BJ));, as in[13], andqy=1. We give de-
tails of this calculation in Appendix A. At the extremum the

—Cf dx dym(x)m(y)In[1+tanhBx tanhBy]

c
order parameters acquire expressions similar to those of Ref. _ J ~ J ~
(1] C | dy(y)Incoshgy+ |H1 dy,m(y))
a _ T aK-1 c
Aoy ooy =180, ><<In 2coshﬁ(z yj+F¢ D ] (3.12
=1
é
|
Qay. ..., “':<(i1 S i) where «=C/K. The saddle-point equations, obtained by

. varying Eg.(3.11) with respect to the probability distribu-
~ " " tions, provide a set of relations betweeiix) and 7(y),
5.5 s

£

c (3.12

q,. .S™...S9| | . p

>q S ) W(y):J’[H dx m(x;)
=1

c-1

(3.8 (x) = f [T dyiy)

Cc-1
SR
=1 ;

where

n
= Cll ..

-Q)

(3.9
1 K—-1
and (...)x=Tren[(.. )X Trgal(...)]. The term y 5y——tanh1(tanh,8JH tanthj) |
P(S)=2{"0Z(a,...a)0a,...aS™ - . . S represents a prob- B =1 5

ability distribution over the space of replicas apg(S)

= <eBF§EaS“>§ is a prior distribution over the same spac_e. ForLater we will show that this self-consistent pair of equations
reasons that will become clear in Sec. Wal repre-  can be seen as a mean-field version for the belief propagation

sents ondth momentum of the equilibrium distribution of a decoding. ) i o
bit-check edge in a belief network during the decoding pro- Using Eq.(3.6) one finds that the local field distribution is

cess anc«ﬁw1 o representsth moments of a check-bit edge

c c
equilibrium distribution. The distributiont’ represents the p(h):f IT dyimyp |{ | h=2 yi—F¢
probability of a certain sitébit node configuration subjected =1 = g'

to exactlyC interactions and with prior probability given by (3.13
Po-

_ _ _ wherem(y) is given by the saddle-point equations above.
B. Replica symmetric solution The magnetizatioril.2) can then be calculated using
The replica symmetri€RS) ansatz can be introduced via

the auxiliary fieldsm(x) and#(y) in the following way(see _
also[12]): m= | dhsgnth)P(h). (3.149
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The code performance can be assessed by assuming a pBor a BSC the above average is over distributi®2). Com-
ticular prior distribution for the message bits, solving theputing the average, using= aK and rescaling the tempera-
saddle-point equation$.12 numerically and then comput- tyre asg=3(InK)/K, in the limit K—o one obtains
ing the magnetization. Instabilities in the solution within the
space of symmetric replicas can be probed looking at second (y)z=(1-2p){tanf Ba(y):In(K)T}¥, (3.19
derivatives of the functional whose extremum defines the
free energy(3.11). The simplest necessary condition for sta-where p is the channel flip probability. The mean field
bility is having non-negative second functional derivatives in{y)>=0 is always a solution to this equatideither para-
relation tor(x) [and 7(y)]: magnetic or SG at B.=In(K)/[2aK(1-2p)] an extra
nontrivial ferromagnetic solution emerges witty),=
1 —2p. As the connection with the magnetizationis given
—f by Eqg.(3.13 and Eq.(3.14), it is not difficult to see that it
B implies m=1 for the ferromagnetic solution. One remark-
able point is that the temperature where the ferromagnetic
> solution emerges iB.~0O(n(K)/K); it means that in a
=0,
J

K-2
[ dxm(x)
=1
K—2
><<In 1+tanhBJ tanf?,BX_H tanhpx; simulated annealing process paramagnetic-ferromagnetic
=t barriers emerge quite early for lardgé values, implying
(3.15 metastability and, consequently, a very slow convergence. It
) ) o seems to advocate the use of smillvalues in practical
for all x. The replica symmetric solution is expected to begpplications. This case is analyzed in Sec. Il E. Bot .
unstable for sufficiently low temperaturdarge8). For high  poth paramagnetic and ferromagnetic solutions exist.
temperatures we can expand the above expression around The ferromagnetic free energy can be obtained from Eq.

small 8 to find the stability condition: (3.1 using EQq.(3.17), being feqo=— a(1—2p). The cor-
> responding entropy iss;o=0, indicating a single solution.
(Dox)7 “=0. (316  The paramagnetic free energy is obtained by plugging

m(x)=8(x) and 7(y)=&(y) into Eq.(3.11):
We expect the average) ,= [dx w(x) x to be zero in the
paramagnetic phase and positive in the ferromagnetic phase,
satisfying the stability condition. This result is still generally
inconclusive, but provides some evidence that can be exam-
ined numerically. In Sec. Ill D we will test the stability of Spara= @(In[cosh B)— Btanh B]+In 2. (3.2
our solutions using conditiof8.15. In the next sections we
restrict our study to the unbiased case=(0), which is of = Paramagnetic  solutions are  unphysical fora
practical relevance, since it is always possible to compress & (In 2)/(3tanh 8—In chp), since the corresponding en-

fpars= — %[a In(cosh B)+1In 2], (3.20

biased message into an unbiased one. tropy is negative. To complete the phase diagram picture we
have to assess the spin-glass free energy and entropy. We
C. CaseK—», C=aK have seen in the beginning of this section that replica sym-

~metric SG and paramagnetic solutions consist of the same

For this case one can obtain solutions to the saddle-poiffe|q gistributions fork —oc, implying unphysical behavior.
equations for arbitrary temperatures. In the first saddle-poin{, order to produce a solution with non-negative entropy,

equation(3.12 one can write one has to break the replica symmetry. We use here a prag-

c-1 matic way to build this solution, using the simplest one-step
= ~(C—1){y)>=(C—1 J dvvar(v). replica symmetry br_eakin(RSB) known asfrozen spins
21 = HY)a=( ) yym(y) It was observed in Refl4] that for the REM a one-step

(3.17 symmetry breaking scheme gives the exact solution. In this
scheme then replicas’ space is divided into groups of
It means that if y) ;=0 [as it is in the paramagnetic and spin identical solutions. It was shown that an abrupt transition in
glass (SG) phases$ then 7(x) must be concentrated at  the order parameter from a unique soluti¢Edwards-
=0, implying thatm(x) = 8(x) and(y) = 8(y) are the only ~Anderson parameter=1, SG phaseto a completely uncor-
possible solutions. Moreover, E(8.17) implies that in the related set of solutionsg=0, paramagnetic phaseccurs.
ferromagnetic phase one can expestO(K). This transition takes place at a crltlcgl temperatﬂggthat
Using Eq.(3.17) and the second saddle-point equationc@n be found by solving the appropriate saddle-point equa-

(3.12 one can find a self-consistent equation for the meadions; this temperature is given by the root of the replica
field (y) : symmetric entropy$zs=0) meaning that the RS-RSB tran-

sition occurs at the same point as the paramagnetic-SG tran-

1 sition in this model. The symmetry breaking parameter was
(y),,=<—tanh‘1(tanr(,8J) found to bemy= 3,4/, indicating that this kind of solution
B is physical only forg> gy, sincemy=<1 [15], indicating a
paramagnetic-SG phase transition. The free energy can be
x{tanH B(C—1)(y) ;T]}K‘l)> . (3.18  computed by plugging the order parameters into the effective

J Hamiltonian, obtained after averaging over the disorder and
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FIG. 4. Phase diagram in the plane temperafurersus noise
level p for K—o andC= aK, with «=4. The dotted line indicates
Nishimori's temperaturdy, . Full lines represent coexistence. The
critical noise level i9. . The necessary condition for stability in the
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critical noise level; a further noise level increase produces
frustration leading to a SG phase where the misalignment is
maximal (m=0). The ferromagnetic-SG transition is analo-
gous to the transition from errorless decoding to decoding
with errors described by Shannon. A paramagnetic phase is
also present when the transmitted information is insufficient
to recover the original messagR¥1).

At zero temperature saddle-point equati¢8s2 can be
rewritten as

Cc-1 C-1
w<x>=HH dym(y)) 5(x—2 y,-), (3.24
I=1 j=1
K-1 K-1
( =f [II:[]. dx (X)) <5(y—sgr(Jl_Hl x|)

xmin(|J|, ... ,|xK_1|)> .
J

The solutions for these saddle-point equations may, in
general, result in probability distributions with singular and
regular parts. As a first approximation we choose the sim-

taking the proper limits. It shows no dependence on the templest self-consistent family of solutions, which are, sidce

perature, since foB> B, the system is completely frozen in
a single configuration.

==+1, given by

For the Sourlas code, in the regime we are interested in,
SG solutions to the saddle-point equations are given by
w(x)= 8(x) andw(y)=8(y). The RSB-SG free energy that
guarantees continuity in the SG-paramagnetic transition is
identical tof,,,, since the SG and paramagnetic solutions

m(y)=p+8(y—1)+pod(y)+p_a8(y+1), (3.25

c-1

I:;—C T[pi ,pO;Cfl](l) 5(X_I),

(3.2

have exactly the same structure, to say:

i[aln(costh)Jrln 2],

B, (3.22

frs-sc= —

where B, is a solution
—Btanh B]+In 2=0.

for srs.sc= afIn(cosh B)

In Fig. 4 we show the phase diagram for a given code rate_|

R in the temperaturd@ versus noise leveb plane.

D. Shannon’s limit

Shannon’s analysis shows that up to a critical code rat

with

(C-1)!
k|h|m| p+p0p— 1

>

T eon(l
[, .po.p_sc-1()= o

(3.27

where the prime indicates th&th,m are such thak—h
k+h+m=C-1. Evidence for this simple ansatz
comes from Monte Carlo integration of E(3.12 at very
low temperatures that shows solutions comprising three
dominant peaks and a relatively weak regular part. Inside

éerromagnetic and paramagnetic phases a more complex sin-

R., which equals the channel capacity, it is possible to regular solution comprising five peaks(y)=p.,5(y—1)

cover information with arbitrarily small error probability for
a given noise level. For the BSC,

(3.23

1
Re=—-=1+plog, p+(1-p)log(1-p).
C

Sourlas code, in the case whefe—o and C~O(NK)

TP+ 8(y—0.5)+pod(y) +p-8(y+0.5)+p_,6(y+1) col-
lapses back to the simpler three peak solution. In Fig. 5 we
show a typical result of a Monte Carlo integration for the

field (y). The two peaks that emerge by using either the
three peak ansatz or the five peak ansatz are shown as dotted
lines. In the inset we show the weak regular part of the
Monte Carlo solution. Plugging the above ansatz into the

can be mapped onto the REM and has been shown to saddle-point equations one can write a closed set of equa-

capable of saturating Shannon’s bound in the liRyit 0 [2].
In this section we extend the analysis to show that Shannon

tions in p.. and p, that can be solved numericallgee ap-

‘sendix D for details

bound can be attained by Sourlas code at zero temperature The three peak solution can be of three types: ferromag-

also for theK—oo limit but with connectivity C=aK. In

netic (p, >p_), paramagneticffp=1) or SG P_=p,).

this limit the model is analogous to the diluted REM ana-Computing free energies and entropies enables one to con-
lyzed by Saakian if16]. The errorless phase is manifested struct the phase diagram. At zero temperature the paramag-
in a ferromagnetic phase with perfect alignmenmt<1) (a  netic free energy i$,,-= —a and the entropy iS,,.= (1
condition that is only possible for infinit€) up to a certain —a)In 2; this phase is physical only fax<<1, which is
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FIG. 5. Histogram representing the mean-field distributiqy) FIG. 6. Phase diagram in the plane code matgersus noise
obtained by Monte Carlo integration at low temperatugs=(l0, level p for K—» and C=aK at zero temperature. The

K=3, C=6, andp=0.1). Dotted lines represent solutions ob- ferromagnetic-SG coexistence line corresponds to Shdasnon

tained by iterating self-consistent equations both with five peak andbound.

three peakAnsdze Inset: detailed view of the weak regular part

arising in the Monte Carlo integration. where®(x)=1 for x=0 and O otherwise, indicating insta-

bility for p>0. For the noiseless cage=0 the stability

expected since it corresponds exactly to the regime where theondition is satisfied. The instability of the ferromagnetic

transmitted information is not sufficient to recover the actualphase opens up the possibility that Sourlas’s code does not

messageR>1). saturate Shannon’s bound, since a correction to the ferro-
The ferromagnetic free energy does not depend on themagnetic solution could change the ferromagnetic-SG tran-

temperature, having the forrfi, .= — @(1—2p) with en-  sition line. However, it was shown in Sec. Ill B that this

tropy Srero=0. One can find the ferromagnetic-SG coexist-instability vanishes for large temperatures, which supports,

ence line that corresponds to the maximum performance of &b some extent, the ferromagnetic-SG line obtained and the

Sourlas code by equating E(B.22 and f,,. Observing saturation of Shannon’s bound in some region, as long as the

that B,=Bn(Pc) (as seen in Fig. ¥ we found that this tran-  temperature is lower than Nishimori’s temperature. For finite

sition coincides with Shannon’s bound, E.23. It is in-  temperatures the stability condition for the ferromagnetic so-

teresting to note that in the largk regime both RS- lution can be rewritten as

ferromagnetic and RSB-SG free energifes T<Tg) do not

depend on the temperature; it means that Shannon’s bound is [1+tanK B)tant(Bx)]*~P)[1—tanh B)tantf(Bx)]P

valid also for finite temperatures up 1q . In Fig. 6 we give _

the complete zero temperature phase diagram. =1V x (3.30
The stability of replica symmetric ferromagnetic and o o .

paramagnetic solutions used to obtain Shannon’s bound cdrP" P=0 the condition is clearly satisfied. For finife a

be checked using Eq3.19 at zero temperature: critical temperature above which the stability condition is
fulfilled can be found numerically. In Fig. 4 we show this

critical temperature in the phase diagram; one can see that
there is a considerable region in which our result showing
that Sourlas’s code can saturate Shannon’s bound is sup-
ported. Conclusive evidence of that will be given by simula-
> 0 tions presented in Sec. IV.
J

K-2

1
lim —HH dx, 7(x))
B—* B I=1
><<In
Although Shannon’s bound can only be attained in the
for all x. limit K—oe, it was shown in Sec. Il C that there are some

For paramagnetic solutions the above integral vanishesP,OSSib|e drawbacks, mainly in the decoding of messages en-

trivially satisfying the condition, while for the ferromagnetic coded by largeK codes, due to large barriers that are ex-
solution in theK large regimex,~O(K) and the integral Pected to occur between paramagnetic and ferromagnetic
becomes states. In this section we consider the firktease, for which

we can solve the RS saddle-point equati@®42 for arbi-
—2p{[1- O (x+1)]+|X|[[O(x+1)—O(x—1)] trary temperatures using Monte Carlo integration. Wg can
also obtain solutions for the zero temperature case using the
+0(x—1)}, (3.29 simple iterative method described in Sec. Il D.

K—-2
1+tanhgJtant? gx [ ] tanhgx
=1

E. Finite K case

(3.28
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‘ ‘ ‘ obtained, one relies on simulations of the decoding process
1.0 LMMN v 1 at low temperatures. In Sec. VIII we show that the simula-
14 K2 | | tions are in good agreement with the theoretical results.
E 05| - bz \:\\ | F. Gaussian noise
]/T' ' Using the replica symmetric free energy.11) and the
O 015 K=3} K=4 K=s§ K=6 frozen spin RSB free enerd®.22 one can easily extend the
0.0 ‘ ‘ i analysis to other noise types. The general paramagnetic free
0.00 0.05 0.10 0.15 0.20 energy and entropy can be written as
P
-1.0 1
fpara= — 7L a(In(cosh BJ));+In 2],
-14} B
-18}
P ‘ ‘ ‘ Spara= @[ {In(coshBd));— B(J tank( 8J)),]+In 2.
0.00 0.05 0.10 0.15 0.20 (3.3)
p

The SG-RSB free energy is given by

FIG. 7. Top: zero temperature magnetizatiras a function of
the noise levep for variousK values at code ratR=1/2, as ob- 1
tained by the iterative method. Notice that the RS theory predicts a fse-rsE= — B—g[a(ln(cosh Bgd))stin 2], (3.32
transition of second order fd€ =2 and first order foK>2. Bot-
tom: RS-ferromagnetic free energiéshite circles forK=2; and with [3g defined as the solution of
from the left,K = 3, 4, 5, and 6) and RSB-SG free enefggptted
line) as functions of the noise levgl. The arrow indicates the a[(In(cosh B4J));— Bg(JItanh(Bgd));]+In 2=0.
region where the RSB-SG phase starts to dominate. Inset: a detailed (3.33

view of the RS-RSB transition region. ] o )
The ferromagnetic free-energy is in general given by

frermo= — @(J) ;= — a{J tanh(B\J)), (see Appendix D The

We expect the ferromagnetic-SG transitionfor 2 tobe  ayimum performance of the code is defined by the critical
properly described by the frozen spin RSB solution. It hase.

been shown thaK>2 extensively connected moddl§4]
exhibit Parisi-type order functions with similar discontinuous a[(In(cosh B4d));— By(J tani BnJ)) ;] +In 2=0,
structure to that found in thK— o case; it was also shown (3.34
that the paramagnetic like solution, employed to describe
paramagnetic and SG phases, is locally stable within thebtained by equating free energies in paramagnetic and fer-
complete replica space and zero fidlshbiased messages romagnetic phases. Comparing this expression with entropy
casg at all temperatures. (3.33 it can be seen tha,= gy at the critical line, the same

At the top of Fig. 7 we show the zero temperature mag-behavior observed in the BSC case. From B¢34 one can
netizationm as a function of the noise level at code rate  write
R=1/2. These curves were obtained by using the three peak
ansatz of Sec. IlI D. It can be seen that the transition is of
second order foK=2 and first order foK>3, similar to
extensively connected models. The transition, as described
by the RS solution, tends tp=0.5 asK grows. Note that hich can be used to compute the performance of the code
this does not correspond to perfect retrieval, since the RSBy arpitrary symmetric noise.
spin-glass phase dominates for p. (see bottom of Fig. )z Supposing that the encoded bits can acquire totally uncon-
In the bottom figure we plot RS free energies and RSB frostrained values, Shannon’s bound for Gaussian noise is given
zen spin free energy, from which we determine the criticalyy R_= 1|og,(1+ S/N), whereS/N is the signal-to-noise ra-
probability p. where the transition occurenarked by an o, defined as the ratio of source energy per (sijuared
arrow. After the transition, free energies f&r=3,4,5 and 6 amplitude over the spectral density of the noiéeariancs.

acquire values that are lower than the SG free energy; neyf one constrains the encoded bits to binary val{red} the
ertheless, the entropy is negative and these free energies &gpacity of a Gaussian channel is

therefore unphysical. It is remarkable that this critical value
does not change significantly for finit€ in comparison to
infinite K. Observe that Shannon’s bound cannot be attained Rc=f dJP(J[1)log, P(J|1)_f dJP(J)log, P(J),
for finite K, sincem=1 exactly only ifK—oo. (3.3

The K=2 model with extensive connectivitySK) is
known to be somewhat special, a full Parisi solution iswhereP(J|J°%) = (1/\27o?)exd — (I—JI%)%/202].
needed to recover the concavity of the free energy and the In Fig. 8 we show the performance of Sourlas’s code in a
Parisi order function has a continuous behayid7]. No  Gaussian channel together with the capacities of the uncon-
stable solution is known for the intensively connected modektrained and binary Gaussian channels. We show thit at
(Viana-Bray model In order to check the theoretical result —o andC= aK, Sourlas’s code saturates Shannon’s bound

J |1
Rfﬁﬁ@ 5log cosh 8J)); . (3.35
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S/N FIG. 9. (a) Belief network representing an error-correcting code.

FIG. 8. Critical code rat®, and channel capacity for a binary Each bitS; (white circles is linked to exactlyC checks, and each
Gaussian channel as a function of the signal-to-noiseIfe(solid  check(black circles J,, is linked to exactlyK bits. (b) Graphical
line). Sourlas’s code saturates Shannon’s bound. Channel capacif§Presentation of the field,; . The gray box represents the mean-
of the unconstrained Gaussian chanfugished ling field contributionll, . ()4, of the other bits on the check; . (c)

Representation of one of the fieldg; .
also for the binary Gaussian channel. The significantly lowe r
performance in the unconstrained Gaussian channel can l%)ﬁ
trivially explained by the binary coding scheme, while signal

obability thatS;=S, given information on all checks other
anu, is denoted

and noise are allowed to acquire real values. qu)z P(Sj=S|{J,:ve M(j\u}),
IV. DECODING DYNAMICS r=Tris 11 c 2P ULl = S{Si T e L(w)\j})
A. Belief propagation y H q(5|)
The decoding process of an error-correcting code relies on el M

computing averages over the marginal posterior probability . ) .
P(S;j|J) for each one of the\ message bitsS; given the 'Eéhe p(;(itr)]abllitr]y OL.tthe. Chﬁcug if the bit | |sdf|z<eﬂ to Sid. i
corrupted encoded bit3, (checks, whereu=(iq, ... .ix) =S, andthe o e(rSi)l S Involved are supposed 1o have distri-
is one of theM sets chosen by the tensal, . The probabi-  Putions given byg i In Fig. 9b) one can see a graphical
listic dependencies existing in the code can be represented E&presentation of;? that can be interpreted as the influence
a bipartite graph known as lzelief networkwhere nodes in  of the bitS; and the mean fieltﬂl,eﬂ(ﬂ)uqfl') [representing
one layer correspond to tié checksJ,,, while nodes in the bits in £(x) over thanl] over the check,, . In the Fig. 9c)
other correspond to thi bits S;. Each check is connected we see that each fielqiﬁ) represents the influence of the
exactly toK bits and each bit is connected exactly @ checks inM(l), excludingu, over each bitS;; this setup
checks[see Fig. @)]. excludes the loops that may exist in the actual network.
Pearl[18] proposed an iterative algorithm for computa-  Employing the Bayes theorerqgfj) can be rewritten as
tion of marginal probabilities in belief networks. These algo- .
rithms operate by updating beliefsonditional probabilities a%)=a,;P{J,1ve M()\u}S)P{Y, (4.
Iocally_ and _propagating them. Generally the convergence Afvhere a,; is a normalization constant, such thqf}l)
these iterations depends on the absence of Ioop:_; in the grapgq&}1):1 and p]gS) is the prior probability over the bit
As can be seen in Fig.(8, networks that define error- The distributionP({JV:ve/\/l(j)\,u}|Sj) can be replaced by

correcting codes may mclude loops, and CONVETYENce proty e an-field approximation by factorizing dependencies us-
lems may occur. Recently it was shown that in some cases

i (S .
Pearl’'s algorithm works even in the presence of logk3. ng fieldsr,j':

The particular use of belief networks as decoding algo- ) () S
1 1 1 i :a p H r i )
rithms for error-correcting codes based on sparse matrices Qi = 3ujP; ve Mg
was discussed by MacKay ir20]. In that work a loop-free - . _
approximation for the graph in Fig.(& was proposedsee Fat = Ths e PQulS=SAS ti e LI\
[18] for a general discussion on such approximatiors
fact, it was shown if21] that the probability of finite length (s)

_ ; _ _ x [T . (4.2)

loops in these graphs vanishes with the system size. ief(uni M

In this framework the network is decomposed in a way to . _
avoid loops, and the conditional probabilitig§) andr(? A message estimatg; =sgn(S;)q) can be obtained by

are computed. The set of bits in a chegkis defined as solving the above equations and computing the pseudoposte-
L(n) and the set of checks over the bitas M(j). The rior:



PRE 60 FINITE-CONNECTIVITY SYSTEMS AS ERROR. .. 5361

q¥=a;p(® [[ 2, (4.3 5qm-=tanl'< > tanh}(or,)+BF|. (47
ve M(j) ve M(I)\n
wherea; is a normalization constant. The pseudoposterior can then be calculated:
By taking advantage of the normalization conditions for
the distributionsg’; Y+ q{;Y=1 andr{;V+r{;Y=1, one B ,
can change variables and reduce the number of equations oq;=tan Ve%(l) tanh (or,) + BF |, “8
(4.2 to the pair q,;=q{"—q;V and or,=r(i"

—r{;1. Solving these equations, one can retrieV§  providing Bayes's optimal decoding=sgn(sq;). It is im-
=3(1+4r,;S;), and the pseudoposterior can be calculatechortant at this point to support the mean-field assumptions

to obtain the estimate. used here by methods of statistical phygi@k The factoriz-
ability of the probability distributions can be explained by
B. Connection with statistical physics weak correlations between connectiqolecks and by the

The belief propagation algorithm was shown[20] to cluster property

outperform other methods, such as simulated annealing. In 1
[9] it was proposed that this framework can be reinterpreted im — : — : 2_,
using statistical physics. The main ideas behind the approxi- nllinw N? 129&1 (S0~ (SpsntSocsia)"—0
mations contained in Eq4.2) are somewhat similar to the (4.9
Bethe[22] approximation to diluted two-body spin glasses. . o
Actually, for systems involving two-body interactions it is that bitsS; obey within a pure statgl7].
known that the Bethe approximation is equivalent to solving One can push the above connections even further. Equa-
exactly a model defined on a Cayley tree and one that this i#0ns (4.7), of course, depend on the particular received mes-
a good approximation for finitely connected systems in thesageJ. In order to make the analysis message independent,
thermodynamical limif23]. In fact, loops in the connections One can use a gauge transformation,;—¢;or,; and
become rare as the system size grows and can be neglectéd,;— &;6q,; to write
without introducing significant errors. The belief propagation
can be seen as a Bethe-like approximation for multiple-body or i =tank 8J) H 80,1,
interaction systems. le L0m)\]

The mean-field approximations used here are also quite

similar to the Thouless-Anderson-Palm@AP) approach .
[24]. The fieldsq(]) correspond to the mean influence of 60, =1an Ve/\;(l)\u tanh™(ér,j)+ BEF|. (4.10

other sites other than the siteand the fieldsr(v? represent
the influence of again over the systeimeaction fields The In this form, a success in the decoding process corresponds
analogy can be exposed by observing that the likelihoodo 6r ;>0 andéq,;=1 for all x andj. For a large number
p(JM|S) is proportional to the Boltzmann weight: of iterations, one can expect the ensemble of belief networks
to converge to an equilibrium distribution whefe and 6q
WB(J;LHSj j eﬁ(,u,)})=eX[{ _mﬂﬂ Si)- (4.4 are random variables sampled from distributidr(sl) and
iep p(X), respectively. By transforming these variables &s
=tanh(By) and dg=tanh(8x) and considering the actual

That can also be written in the more convenient form message and noise as quenched disorder, (Bds) can be

WB(J,uHSj el rewritten as
K-1
1 1 1
= ZcoshBd,)| 1+taniB3,) [l s|. (45 y=={ tanhr ¥ tanh(B9) [] tankipx)) | ) .
2 a Mietw B =1 3
The variabler ) can then be seen as proportional to the c1
effective Boltzmann weight obtained by fixing the Bit: “ yité :
&

Weill Il ) =T 11 cooWe G H{S 1 & LG The above relations lead to a dynamics in the distributions
(S) p(y) and p(x), which is exactly the same obtained when
: (4.6 solving iteratively RS saddle-point equatiofi3.12. The

probability distributionsﬁ(y) and p(x) can, therefore, be

Plugging Eq.(4.5 for the likelihood into Eqs(4.2), using  identified with (y) and(x), respectively, and the RS so-
the fact that the prior probability is given bg;®=3[1  |utions correspond to decoding a generic message using be-

X |
leLlun *

+tanh(8SF)], and computingsq,,; and or ,;, lief propagation averaged over an ensemble of different
codes, noise, and signals.
5fﬂj=tank(,8J#)l H 5 Equations(4.7) are now used to show the agreement be-

e L(u)\j tween the simulated decoding and analytical calculations.
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FIG. 10. Magnetization as a function of the flip probabilityor FIG. 12. Top: maximum initial deviation for decoding. TopA

decoding using TAP equations f&r:.Z_ From. the bottom:. Monte as function of the number of interactioks Circles are averages
Carlo solution of the RS saddle-point equations for unbiased mes-

. : over ten different codes witN=300, R=1/3, and noise le
sages {;=0.5) atT=0.26 (line) and ten independent runs of TAP v ! m I veb

. . i . . =0.1. Bottom:\ as function of the connectivityC. Circles are
decoding for each flip propabllltgplus signg, T=0.26, and biased averages over ten codes with=300, K=3, and noise levep
messagesf(=0.1) at Nishimoris temperaturd .

=0.1. Lines andx’s correspond to the RS dynamics described by

he saddle-point equations.
For each run, a fixed code is used to generate 20 000 bﬁt P a

codewords from 10000 bit messages; corrupted versions Qfionte Carlo integration methods we obtain solutions that are
the codewords are then decoded using @q?). Numerical i, good agreement with simulated decoding. In the same
solutions for ten individual runs are presented in Figs. 10 an(ﬁgure we show the performance for the case of biased mes-
11; initial conditions are chosen a#r, =0 and 60,  gages pM=1,=0.1), at code rateR=1/4. Also here the
=tanh(8F), reflecting prior beliefs. In Fig. 10 we show re- ,greement with Monte Carlo integrations is rather convinc-
sults forkK=2 andC=4 mlthe unbiased case, at code ratejng The third curve in Fig. 10 shows the performance for
R=1/2 (prior probabilityp{”'=f=0.5) at a low temperature pjzseq messages at Nishimori's temperatlitg, as ex-
T=0.26 (we avoidedT=0 due to numerical difficultios  pected, it is far superior compared to low temperature per-
Solving saddle-point equation3.12 numerically using formance, and the agreement with Monte Carlo results is
even better.

In Fig. 11 we show the results obtained =5 andC
=10. For unbiased messages the system is extremely sensi-

10 ‘\Eﬂh | tive to the choice of initial conditions and does not perform
Biased . . . .
well on average, even at Nishim&sitemperature. For biased
messages f(=0.1, R=1/4) results are far better and in
06 | | agreement with Monte Carlo integration of the RS saddle-

point equations.

The experiments show that belief propagation methods
o may be used successfully for decoding Sourlas-type codes in
02 | Unbiased ] practiqe, and p_rovide solutions that are well described by RS

: analytical solutions.

== i Iy L BT e S TR . )
C. Basin of attraction
—0.2 ‘ - ‘ ‘ To assess the size of the basin of attraction, we consider
0.0 0.1 0.2 0.3 0.4 0.5  the decoding process as a dynamics in the graph space where
P edgesdq,,; are considered as dynamical variables. In gauged

FIG. 11, M L function of the fi babil transformed equation@.10), the perfect decoding of a mes-
- 11. Magnetization as a function of the flip probabifityor sage corresponds ¥ ,;=1. To analyze the basin of attrac-

decgdlng using TAP equations m:5.' The dotted “n? IS the. tion, we start with random initial values with a given nor-
replica symmetric saddle-point equation Monte Carlo integration

for unbiased message$ € 0.5) at Nishimori's temperatur&y . malized deVIatlono from the perfect Qe_codlng\

The bottom error bars correspond to ten simulations using the TAP- (1NC)2 (1= 46q,,). Itis analogous to the finite magne-
decoding. The decoding performs badly on average in this scenari§izations used in the naive mean field of Sec. II, since a given
The upper curves are for biased messades 0.1) at the Nishi-  60,,; corresponds to a given magnetization value by using
mori temperaturdly . The simulations agree with results obtained Eq. (4.98).

using the replica symmetric Ansatz and Monte Carlo integration. In Fig. 12 we show the maximal deviation in initial con-
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ditions required for successful decoding. The top figureinsights into the typical performance of general error-
shows an average over ten different codes with-300  correcting codes.
(circles for a fixed code ratdR=1/3, fixed noise levep
=0.1, and increasing. The bottom figure shows the maxi- ACKNOWLEDGMENTS
mal deviation in initial conditions for a fixed number of spins
per interactionK =3, noise levelp=0.1, and increasing.
We confirm the fidelity of the RS description by comparing
the experimental results with the basin of attraction predicte
by saddle-point equation&3.12. One can interpret these
equations as a dynamics in the space of distributie(s).
Performing the transformatio =tanh(B8x), one can move
to the space of distributionH (X) with support ovel —1,
+1]. The initial conditions can then be described simply as |n order to compute free energies, one needs to calculate
ITO(X)=(1—N/2)6(X—1)+(N/2)8(X+1). In Fig. 12 we the replicated partition functiof8.7). One can start from Eq.
show the basin of attraction of this dynamics as lines and3.4):
crosses.

The K=2 case is the only practical code from a dynami- <Z”>A,§,J=Tr{sja}(<exr[—BH(“)({S"‘})])A,J,S), (A1)
cal point of view, since it has the largest basin of attraction
and no prior knowledge of the message is necessary for devhere (W({S*) represents the replicated Hamiltonian and
coding. Nevertheless, this cdde performance degrades o the replica indices. First one averages over the parity
faster than th&(>2 case, as shown in Sec. lll, which points check tensorst, for which an appropriate distribution has to
to a compromise between good dynamical properties on onge introduced, denoting=(i., ... ,ix) for a specific set of
side and good performance on the other. One idea could hiadices:
to have a code with changirg, starting withK =2, to guar-
antee convergence and progressively increase its values to n
improve the performanci25]. (2")=

On the other hand, the basin of attraction increases with
C. Again it points to a trade-off between good equilibrium
propertiegsmallC and large code ratgand good dynamical
properties(large C, large basin of attraction Mixing small

and largeC values in the same code seems to be a way Qyhere thes distribution imposes a restriction on the connec-
take advantage of this trade-¢#6-28. tivity per spin, \is a normalization coefficient, and the no-
tation u\i means the set minus the elemernit Using inte-
V. CONCLUDING REMARKS gral representations for th& functions and rearranging,

W § 2]

This work was partially supported by the program “Re-
search For The FuturelRFTP of the Japanese Society for
he Promotion of Sciencér.K.), and by EPSRC Grant No.

R/L52093 and a Royal Society travel graf®.S. and
R.V.).

APPENDIX A: FREE ENERGY

{EA} H 5( > AM—C>Tr{Sja}

{piie pu}

zl =

XeXF{—ﬁH(”)({S“})]> , (A2)
3¢

finite connectivity many-body spin glass that corresponds to (ZM)=Tr g
Sourlas’s codes for finite code rates. We have shown, using a (S}

In this paper we studied, using the replica approach, a <
simplified one step RSB solution for the spin-glass phase,

that for theK—o and C=aK regime at low temperatures A () s e
the system exhibits a ferromagnetic-SG phase transition that x> |11 H Zi exf — BH™({S)]

1 {A} M leu
corresponds to Shannon’s bound. However, we have also 3¢
shown that the decoding problem for largehas bad con- (A3)
vergence properties when simulated annealing strategies are
used. Remembering thatl € {0,1}, and using the expressidm.1)

We were able to find replica symmetric solutions for finite for the Hamiltonian, one can change the order of the sum-

K and found good agreement with practical decoding performation and the product above and sum aver
mance using belief networks. Moreover, we have shown that

RS saddle-point equations actually describe the mean behav- 1 dz 1 .

ior of belief propagation algorithms. <Z“>=Tr{s.a}</v( I1 é — C+1) ePFZaiéiS
We studied the dynamical properties of belief propagation ! ! 2 Z;

and compared them to statistical physics predictions, con-

firming the validity of the description. The basin of attraction _ o

was shown to depend dh and C. Strategies for improving Xl;l ile—lﬂ zl)exp( 'BJ“EO:‘ ile—lﬂ S )D '

the performance were discussed. 3¢
The same methodology has been employed successfully (A4)

[29] to state-of-the-art algorithms as the recently rediscov-

ered Gallager codg30] and its variationg25,28. We be- Using  the identity  expgJ,Il;.,S")=cosh{B)[1

lieve that the connections found between belief networks and- (I1; . ,S")tanh(8J,,) ], one can perform the product over

statistical physics can be further developed to provide deepdo write

1+
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1 dz 1 o 1 dz 1 e
M =Trsm— — BFEqi6iS MY = Tr) car — —_a BFa,i&S
XH 1+ 1] 2 )cosﬁ‘(ﬁ) Xex;{cosﬁ‘(ﬂ)(z (.H zi>
ieun y23 leuw
x| 1+(tanf(p9)), 2 I1 s +(tant(2),2 2 [ zs"
a lep a u lep
+<tanr?<ﬂa)>J > I s*II s+ } +(tank?(BJ) s, > X Il zsms™+ - }
(ajap) ien jeu (ajap) w iep
(A5) (AB)
Defining {u1,u2,- - -, ;) as an ordered set of sets, and _ o
observing that for large N, E<M1 m>( L) Observing that = —(1/Kl)2 _____ i defining 7,

=(M[=,(...)]", one can perform the product over the =(cosH(BI)tant(BJ));, and mtroducmg auxiliary variables
setsu and replace the series that appears by an exponentlaqal o m—(l/N)E Z; S“1 S m . one finds

<Z“>A,§,J=%/(1:[ ffgd—;'-Z;l)(quod-ao)(H qu“d-a“>~-~e ;J[N (Toqo+T12 B+ ok, ”

2 2 o 2i (aras)

XeXF{ (q0q0+2 qaqa+ E qalazqﬂllaz U )}

C’10‘2

><Tr{sj“} <eBF2”'i§iS'a>§eXPZ QoZi+ 2 QuziS*+- - } (A7)
I o
|
The normalization constant is given by APPENDIX B: REPLICA SYMMETRIC SOLUTION
The replica symmetric free energ$.11) can be obtained
N=> 11 5( > A, C) (A8) by plugging the ansat8.10 into Eq.(A7). After computing
M {uien) the normalization\V" and using Laplace’s method, one has
and can be computed using exactly the same methods as c
above, resulting in (Z”)A,g,fexp{ N Ethﬁ,%{Rgl —CG,+Gs|t, (BL)
dz 1 dgoddo
N—(H §ﬁ291)<f oy where
K K
xed U Nt 66D 5. (A9 G- nS | IT et tant )
Computing the integrals ovez;’'s and using Laplace’s
method to compute the integrals ovegy andq,, one gets +Tz<alEaz> f H [dx; m(x;) tankf(Bxp)1+ -,
NK K . ag (BZ)
N=exp| Extry_ g, mqo—NqoqovLNln ol
(A10) Go=1+, j dx dym(x) 7(y) tanH 8x) tanh( By)
The extremum point is given bygy=N®"K/K[(K
—1)IC1¥ andgy=(C N)K Y[ (K—1)11", Replacing + > dx dym(x) 7(y) tank?( Bx) tank¥( By)
the auxiliary variables in Eq.(A7) using qal___am/q0 (ajap)
—0a...a, A0, o /o—0a, .. a,, COMputing the in- N (B3)

tegrals overz;, and using Laplace’s method to evaluate the
integrals, one finally finds Eq3.7). and
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dz 1
2mi 1 Trisn

I1

i

Xequo( zi+ % zsfdyw(y)tanhﬁy)

gg—ﬁn

<exp BF2, fiS.“>

&

+
(ajap)

2 ZiS.alSi“Zf dy m(y)tantf(By)+ - - - ) H .

(B4)

The equation foG; can be worked out by using the defi-
nition of 7;, and the fact thatX,, .. .4,1)= (}') to write

K
g1=<cosH‘(,8J)f (]1_[1 dx; W(Xj))

K n
x| 1+tanh( BN ][] tanh(,ij)) > . (BY)
j=1 ;
Following exactly the same steps one obtains

g2=J dx dym(x) m(y) [ 1+ tanh Bx) tanh( By)]",
(B6)

and

dz 1
277| ZC+1

g3= |n {Tr{sa}

ez 45

xexp| 0oz dy%(y)Hl(lJrS“tan"(ﬁW))

(B7)

Computing the integral ovex and the trace one finally finds

6] C
Gz=1In {C_(')f |:Hl dy,m(y))

FINITE-CONNECTIVITY SYSTEMS AS ERROR. ..
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c-1
W(X):I:;C T[pi ’po;c_l](|)5(X—|), (CZ)
with
Tip. pop_:cr(D)
(C—-1)! K _hom
{khmk—h=k+h+m=c—-1; K'h!m! P=PoP=
(C3

one can consider the problem as a random walk, wlﬁﬂé;e
describes the probability of one step of length
y (y>0 means one step to the riglaind 7(x) describes the
probability of being at distance from the origin afterC
—1 steps. With this idea in mind it is relatively easy to
understandl'[p+ Po.p_ .c—1)(l) as the probability of walking
the distancd after C—1 steps with the probabilitiep, ,
p_, andp, of, respectively, moving right, left, and staying at
the same position. We define the probabilities of walking
right/left as . =S *T;, o o .c-1)(*1). Using second
saddle-point equations.24),

K-1 K-1
=f |1j[1 dX| 7T(X|) <§( 1_Sgr(\]|1_[1 X|)
><min(|J|,|x1|,...,|xK_1|)> . (4
J

The left side of the above equality can be read as the
probability of makingK—1 independent walks, such that
afterC—1 steps all of them are not in the origin and an even
(for J=+1) or odd(for J=—1) number of walks are on the
left side. Using this reasoning f@r_ andp,, one can finally
write

K-1
=1 k=
120 ( 2j

=(1—
(1-p) ]

2j K—2j—1
)llf—]l//+ :
Koty

+p2

2j+1 ,K—2j—2
¥ +

n =0 2j+1
e?hFe 1+ otan
x| 2 (e, H (1+o wsym} ] o st odd (K1) cs
(B8) K-1
=171 _
Putting everything together, and using E§.3) and some p_=(1-p) ) N
simple manipulation, one finds E¢B.11). =0 12j+1
K-1
l——1-1
APPENDIX C: ZERO TEMPERATURE SELF-CONSISTENT i 22 n 2j K 2j—1
EQUATIONS P <o 2] ‘/I
In this appendix we describe how one can write a set of +(1-p) 5t odd (K—1), (C6)

self-consistent equations to solve the zero temperature
saddle-point equatione3.24). Supposing a three peaks an- where oddg)=1(0) if x is odd (even. Using thatp. +p_
satz given by +po=1, one can obtaip,. A similar set of equations can

be obtained for a five peak ansatz leading to the same set of

7(y)=p; 8(y—1)+pod(y)+p-S(y+1), (C1

solutions for the ferromagnetic and paramagnetic phases.
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The paramagnetic solutiop,=1 is always a solution; for p(J|1)—p(—J|1)

i i i tanh J)= . D3
C>K a ferromagnetic solution witp,>p_>0 emerges. (BnJ) QD)+ p(—J[1) (D3)

APPENDIX D

In this appendix we establish the identityJ), Therefore,
=(Jtanh(BnJ)); for symmetric channels. It was shown in
[3] that
1 ( pQlD) (Jtanh(By3)),=Tryp(3]1) —— 22D
N J— '3
By = z'“(h)’ O p([1)+ p(—J[1)

. (—=Jd)p(—J1)
where By is Nishimori's temperature ang@(J|J°) are the +Trdp(3|1/p(3|l)+p(_3|1)
probabilities that a transmitted hif is received asl. From
this we can easily find Jp(J|1)

=Tr,p(J[1)

p(J|1)+p(—J[1)
Jp(J|1)
p(—J/1)+pQ|1)

p(J[1)—p(J|-1)
p(J|1)+pJ|—1)"

In a symmetric channdlp(J|—J%=p(—J/3%], it is also

tanh(BynJ) =

(D2)

+Tryp(—J|1)

represented as =Trydp(J|1)=(J);. (D4)
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